COMP3411/9814 Artificial Intelligence
Term 1, 2021

Assignment 2 — Machine Learning
(DRAFT ONLY)

Due: Friday 23 April, 10pm
Marks: 20% of final assessment for COMP3411/9814 Artificial Intelligence

Part 1: Decision Trees

Question 1.1 (5 marks):

Consider the decision tree learning algorithm of Figure 7.7 and the data of Figure 7.1
from Poole & Mackworth [1], also presented below. Suppose, for this question, the
stopping criterion is that all of the examples have the same classification. The tree of
Figure 7.6 was built by selecting a feature that gives the maximum information gain.
This question considers what happens when a different feature is selected.

Ezample Author Thread Length Where_read User_action
e, known new long home skips
e, unknown new short work reads
e3 unknown followup long work skips
ey known followup long home skips
es known new short home reads
eg known followup long work skips
e unknown followup short work skips
eg unknown new short work reads
ey known followup long home skips
ey known new long work skips
en unknown followup short home skips
e known new long work skips
e known followup short home reads
ey known new short work reads
e known new short home reads
e known followup short work reads
ey known new short home reads
e unknown new short work reads
e unknown new long work ?

ey unknown followup short home ?

Figﬁre 7.1: Exampies of a user’s pfeferencés

a) Suppose you change the algorithm to always select the first element of the list of
features. What tree is found when the features are in the order [Author, Thread,
Length, WhereRead]? Does this tree represent a different function than that found
with the maximum information gain split? Explain.

b) What tree is found when the features are in the order [WhereRead, Thread, Length,
Author]? Does this tree represent a different function than that found with the
maximum information gain split or the one given for the preceding part? Explain.

c) Is there a tree that correctly classifies the training examples but represents a different
function than those found by the preceding algorithms? If so, give it. If not, explain
why.

Question 1.2 (5 marks):

The goal is to take out-of-the-box models and apply them to a given dataset. The task s
to analyse the data and build a model to predict whether income exceeds $50K/yr
based on census data (also known as "Census Income" dataset).

Use the data set Adult Data Set from the Machine Learning repository [2].
Use the supervised learning methods discussed in the lectures, Decision Trees.

Do not code these methods: instead use the J48 implementation in Weka. Read the
Weka documentation on Decision Trees, and the linked pages describing the parameters
of the methods. You will need to download Weka, from he link above.

You should submit, as part of your PDF file, the decision tree you obtained, along with
an explanation of the process you went through to get it. You can experiment with
pruning the tree, including trying different pruning settings. What affect do these
setttings have on the size of the tree and the accuracy?

This question will help you master the workflow of model building. For example,
you’ll get to practice how to use the critical steps:

* Importing data

* Cleaning data

 Splitting it into train/test or cross-validation sets
* Pre-processing

* Transformations

* Feature engineering

Use the Weka documentation pages for instructions how to use J48. See also this
WebCMS page.

The data are available here: http://archive.ics.uci.edu/ml/

machine-learning-databases/adult/

https://www.cs.waikato.ac.nz/~ml/weka/
https://webcms3.cse.unsw.edu.au/COMP3411/21T1/resources/57750
https://webcms3.cse.unsw.edu.au/COMP3411/21T1/resources/57750
http://archive.ics.uci.edu/ml/machine-learning-databases/adult/
http://archive.ics.uci.edu/ml/machine-learning-databases/adult/
http://archive.ics.uci.edu/ml/machine-learning-databases/adult/

Part 2: Inductive Logic Programming

Duce is a program devised by Muggleton [3] to perform learning on a set of propositional
clauses. The system includes 6 operators that transform pairs of clauses into a new set of
clauses. Your job is to write Prolog programs to implement 5 of the 6 operators. The other
one is given as an example to get you started.

Inter-construction. This transformation takes two rules, with different heads, such as

x <- [b, c, d, €]
y <- [a’ b: d’ F]

and replaces the with rules

x <- [c, e, Z]

y <- [G, F’ Z]

z <- [b, d]
To make processing the rules easier, we represent the body of the clause by a list and we
define the operator <- to mean “implied by” or “if’.

A Prolog program to implement inter-construction is given as an example to give you
hints about how to write the remaining 5 operators.

:- op(300, xfx, <-).

inter_construction(Cl <- B1, C2 <- B2, C1 <- Z1B, C2 <- Z2B, C <- B) :-
C1 \= (2,
intersection(B1, B2, B),
gensym(z, C),
subtract(B1, B, Bll),
subtract(B2, B, B12),
append(B11, [C], Z1B),
append(B12, [C], Z2B).

First, we define <- as an operator that will allow us to use the notation X <- Y. The
program uses Prolog built-in predicates to perform set operations on lists and to generate
new symbols.

1. The first line the program assumes that the first two arguments are given as
propositional clauses. The remaining three arguments are the output clauses, as in the
example above.

2. inter_construction operates on two clauses that gave different heads, i.e. C1 \= C2.
3. We then find the interaction of the bodies of the clauses and call it, B.

4. gensym is a builtin predicate that creates a new name from a base name. So
gensym(z, C) binds C to z1. Every subsequent call to gensym, with base z, will create
names, z2, z3, Calling reset_gensym will restart the numbering sequence.

5. At this point the last argument C <- B = z1<-[b, d] because C is bound to z1 and B
is the intersection [b, dJ.

6. The bodies Z1B and Z2B, are obtained by subtracting the intersection, B, from B1 and
B2 and appending the single element [C]. So we can run the program:

?- inter_construction(x <- [b, ¢, d, e], y <- [a, b, d, f], X, Y, 2).
X = x<-[c, e, z1],

Y = y<-[a, f, z1],

Z = z1<-[b, d].

obtaining the desired result.

You will write programs for the other five operators, defined below. All of these programs
can be created from the builtin predicates used in the inter-construction code. So all you
have to do is work out how to combine them. The only other builtin predicate you may
need is to test if one list is a subset of another with subset(X, Y), where X is a subset of
Y.

You can assume that the inputs will always be valid clauses and the lists will always be
non-empty, i.e. with at least one element.

Question 2.1 (2 marks):

Intra-construction. This transformation takes two rules, with the same head, such as
x <- [b, c, d, €]
x <- [a, b, d, f]

and replaces the with rules

X <- [b, d, z]
z <- [c, €]
z <- [a, f]

That is, we merge the two, x, clauses, keeping the intersection and adding a new predicate,
z, that distributes the differences to two new clauses.

?- intra_construction(x <- [b, c, d, e], x <- [a, b, d, f], X, Y, Z).

X = x<-[b, d, z1],
Y = zl<-[c, €],
Z = z1<-[a, f].

Question 2.2 (2 marks):

Absorption. This transformation takes two rules, with the different heads, such as

x <- [a, b, c, d, €]
y <- [a, b, c]

and replaces the with rules

X <- [y’ d’ e:l
y <- [a, b, c]

Note that the second clause is unchanged. This operator checks to see if the body of one

clause is a subset of the other. If it is, the common elements can be removed from the
larger clause and replaced by the head of the smaller one.

?- absorption(x <- [a, b, c, d, €], y <- [a, b, c], X, Y).
X = X<-|:Y, d’ e]’
Y = y<-[a, b, c].

Question 2.3 (2 marks):

Identification. This transformation applies to two rules that have the same head and one
clause has exactly one symbol that does not appear in the other clause, for example:

X <- [a, b, ¢, d, €]

X <- [Cl) b ’)’]
can be replaced by rules

X <= [G ’ b ’ y:l

y <- [c, d, e]
That 1s, we take the intersection out of each clause and if there is exactly one symbol left
in one of the clauses, we identify it with the set of symbols from the other clause.

?- identification(x <- [a, b, c, d, e], x <- [a, b, y], X, Y).
X X<—[G, b’ y:|7
Y = y<-[c, d, €e].

Question 2.4 (2 marks):

Dichotomisation. This transformation is different from the other in that it works on
positive and negative examples of the same predicate. For example:

x <- [a, b, c, d]
nOt(X) <= [O, G, j’ k]

can be replaced by rules

x <- [a, c, z]

not(x) <- [a, ¢, not(z)]
z <- [b, d]

not(z) <- [j, ki

This is similar to a decision tree splitting rule where we create a binary split into a branch
with positive examples of x and branch with negative examples. Again, it depends on
finding the intersection of the two input clauses, where one is a positive example, x, and
one is a negative example, not(x). Keep the intersection in each clause and create two
new clauses, z, and not(z), to distinguish the positive and negative examples.

?- dichotomisation(x <- [a,b,c,d], not(x) <- [a,c,j,k], A, B, C, D).
A = x<-[a, c, z1],

not(x)<-[a, c, not(zl)],

z1<-[b, d],

not(z1)<-[j, kJ.

B
C
D

Question 2.5 (2 marks):
Truncation. This is the simplest transformation. It takes two rules that have the same
head and simply drops the differences to leave just one rule. For example
x <- [a, b, ¢, d]
X <= l:a’ G, j’ k]
are replaced by

x <- [a, c]

That is, the body of the new clause is just the intersection of the bodies of the input
clauses.

?- truncation(x <- [a, b, c, d], x <- [a, c, j, kI, X).
X = x<-[a, c].

The complete Duce algorithm performs a search, looking for combination of these
operators that will lead to the greater compression over the database of examples. Here
compression is measured by the reduction in the number of symbols in the database. You
don’t have to worry about the search algorithm, just implement the operators, as above.

References

1. Poole &Mackworth, Artificial Intelligence: Foundations of Computational Agents,
Chapter 7, Supervised Machine Learning)

2. http://archive.ics.uci.edu/ml/datasets/Adult).

3. Muggleton, S. (1987). Duce, An oracle based approach to constructive induction.
Proceedings of the International Joint Conference on Artificial Intelligence, 287-292.

Submission

This assignment must be submitted electronically.

Put your zID and your name at the top of every page of your submission!

give cs3411 assign2 partl.pdf part2.pl

Late submissions will incur a penalty of 10% per day, applied to the maximum mark.

Group submissions will not be allowed. By all means, discuss the assignment with your
fellow students. But you must write (or type) your answers individually. Do NOT copy

anyone else’s assignment, or send your assignment to any other student.

http://archive.ics.uci.edu/ml/datasets/Adult)

