
COMP3411 Tutorial - Week 9 
Neural Nets and ILP 

Question 1

a) Construct by hand a Perceptron which correctly classifies the following data; use your knowledge of 

plane geometry to choose appropriate values for the weights w0, w1 and w2.





The first step is to plot the data on a 2-D graph, and draw a line which separates the positive from the negative data 
points:





Based on the two intersection points, we can derive the following line slope:





With the slope, the corresponding line equation can be partially calculated, utilising an identified point on the line, 
which will be (0.5, 1) for this example (the point between (0,1) and (1,1)):












Since x2  is equivalent to y based on our dataset, we can deduce a quadratic equation using our line equation which 
will provide the weightings:










Slope = m =
(y2 − y1)
(x2 − x1)

=
(0 − 1)
(2 − 0)

= − 0.5

y = m x + b
≅ 1 = − 0.5 * 0.5 + b

b = 5/4 ≡ 1.25
y = − 0.5x + 1.25

x2 = − 0.5x1 + 1.25
≡ 0 = 0.5x1 + x2 − 1.25
≡ 0 = 2x1 + 4x2 − 5



This results in the following weights:


	 w0 = -5


	 w1 = 2


	 w2 = 4


Alternatively, we can derive weights w1=1 and w2=2 by drawing a vector normal to the separating line, in the 
direction pointing towards the positive data points:





The bias weight w0 can then be found by computing the dot product of the normal vector with a perpendicular 

vector from the separating line to the origin. In this case w0 = 1(-0.5) + 2(-1) = -2.5


Note: these weights differ from the previous ones by a normalising constant, which is fine for a perceptron.




b) Demonstrate the Perceptron Learning Algorithm on the above data, using a learning rate of 1.0 and 
the following initial weight values:


	 w0 = -0.5


	 w1 = 0


	 w2 = 1


Be sure to round the predicted result to the closest class value available (-1 or 1 in this case).


Note that we only have three training examples (a, b, c), but we keep iterating over them until no corrections are required for 
the network to produce the correct output. 

Iteration w0 w1 w2 Example x1 x2 Class Prediction Rounded Action

1 -2.5 0.0 -1.0 a 0.0 1.0 -1 0.5 1.0 Subtract

2 -2.5 0.0 -1.0 b 2.0 0.0 -1 -2.5 -1 None

3 -0.5 2.0 1.0 c 1.0 1.0 1 -3.5 -1 Add

4 -2.5 2.0 -1.0 a 0.0 1.0 -1 0.5 1 Subtract

5 -4.5 -2.0 -1.0 b 2.0 0.0 -1 1.5 1 Subtract

6 -2.5 0.0 1.0 c 1.0 1.0 1 -7.5 -1 Add

7 -2.5 0.0 1.0 a 0.0 1.0 -1 -1.5 -1 None

8 -2.5 0.0 1.0 b 2.0 0.0 -1 -2.5 -1 None

9 -0.5 2.0 3.0 c 1.0 1.0 1 -1.5 -1 Add

10 -2.5 2.0 1.0 a 0.0 1.0 -1 2.5 1.0 Subtract

11 -4.5 -2.0 1.0 b 2.0 0.0 -1 1.5 1.0 Subtract

12 -2.5 0.0 3.0 c 1.0 1.0 1 -5.5 -1 Add

13 -4.5 0.0 1.0 a 0.0 1.0 -1 0.5 1 Subtract

14 -4.5 0.0 1.0 b 2.0 0.0 -1 -4.5 -1 None

15 -2.5 2.0 3.0 c 1.0 1.0 1 -3.5 -1 Add

16 -4.5 2.0 1.0 a 0.0 1.0 -1 0.5 1.0 Subtract

17 -4.5 2.0 1.0 b 2.0 0.0 -1 -0.5 -1.0 None

18 -2.5 4.0 3.0 c 1.0 1.0 1 -1.5 -1 Add

19 -4.5 4.0 1.0 a 0.0 1.0 -1 0.5 1.0 Subtract

20 -6.5 0.0 1.0 b 2.0 0.0 -1 3.5 1 Subtract

21 -4.5 2.0 3.0 c 1.0 1.0 1 -5.5 -1 Add

22 -4.5 2.0 3.0 a 0.0 1.0 -1 -1.5 -1 None

23 -4.5 2.0 3.0 b 2.0 0.0 -1 -0.5 -1 None

24 -4.5 2.0 3.0 c 1.0 1.0 1 0.5 1 None



Question 2


Explain how each of the following could be constructed:


a) Perceptron to compute the OR function of m inputs


Set the bias weight to -½, all other weights to 1. 


The OR function is almost always True. The only way it can be False is if all inputs are 0. Therefore, we 
set the bias to be slightly less than zero for this input.


b) Perceptron to compute the AND function of n inputs


Set the bias weight to , all other weights to 1.


AND function is almost always False. The only way it can be True is if all inputs are 1. Therefore, we set 
the bias so that, when all inputs are 1, the combined sum is slightly greater than 0.


c) 2-Layer Neural Network to compute any (given) logical expression, assuming it is written in 
Conjunctive Normal Form.


Each hidden node should compute one disjunctive term in the expression. The weights should be -1 for 
items that are negated, +1 for others. The bias should be k - ½ where k is the number of items that are 
negated. The output node then computes the conjunction of all hidden nodes.


For example, here the network computes 





( 1
2

− n)

(A ∨ B) ∧ (¬B ∨ C ∨ ¬D) ∧ (D ∨ ¬E )



Question 3


a) Find the least general generalisation of  the following terms:


	 f(g(a, b), [1, 2, [3, 4], 5], 1 + 2 * 6)

f(g(a, h(x, y)), [1, 2, [3, 4, 5]], 1 + 6)


To find the LGG, look for where the terms differ and replace with a variable. Reuse the same variable if 
the same terms appear in corresponding positions.


lgg = f(g(a, X), [1, 2, [3, 4 | Y] | Y], 1 + Z)

subst = [X/{b, h(x, y)}, Y/{[], [5]}, Z/{2*6, 6}]


The list is tricky because the inverse substitution Y/{[], [5]} applies also as Y/{[5], []} .


b) Find the least general generalisation of  the following clauses:


q(f(a)) :- p(a, b), r(b, c), r(b, e).

q(f(x)) :- p(x, y), r(y, z), r(w, z).


To find the LGG of two clauses, match the head, then find all combinations of possible LGGs between 
literals that have consistent inverse substitutions.


q(f(X)) :- p(X, Y), r(Y, Z), r(W, Z), R(Y, E), r(W, E)

subst = [X/{a, x}, Y/{b, y}, Z/{c, z}, W/{b, w}, E/{e, z}]


