
COMP3411/9814 Artificial Intelligence

Term 1, 2021 

Assignment 1 – Prolog and Search

Due: Friday 19 March, 10:00 pm

Marks: 20% of final assessment for COMP3411/9814 Artificial Intelligence

Part 1 - Prolog

In	this	part,	you	are	to	write	some	Prolog	programs.

At	the	top	of	your	file,	place	a	comment	containing	your	full	name,	student	
number	and	assignment	name.	You	may	add	additional	information	like	the	date	
the	program	was	completed,	etc.	if	you	wish.

At	the	start	of	each	Prolog	predicate,	write	a	comment	describing	the	operation	of	
the	predicate.

Testing Your Code

A	significant	part	of	completing	this	assignment	will	be	testing	the	code	you	write	
to	make	sure	that	it	works	correctly.	To	do	this,	you	will	need	to	design	test	cases	
that	exercise	every	part	of	the	code.

You	should	pay	particular	attention	to	"boundary	cases",	that	is,	what	happens	
when	the	data	you	are	testing	with	is	very	small,	or	in	some	way	special.	For	
example:

• What	happens	when	the	list	you	input	has	no	members,	or	only	one	member?

• Does	you	code	work	for	lists	with	both	even	and	odd	numbers	of	members?

• Does	your	code	work	for	negative	numbers?

Note:	not	all	of	these	matter	in	all	cases,	so	for	example	with	sqrt_table,	negative	
numbers	don't	have	square	roots,	so	it	doesn't	make	sense	to	ask	whether	your	
code	works	with	negative	numbers.

With	each	question,	some	example	test	data	are	provided	to	clarify	what	the	code	
is	intended	to	do.	You	need	to	design	further	test	data.	Testing,	and	designing	test	
cases,	is	part	of	the	total	programming	task.

It	is	important	to	use	exactly	the	names	given	below	for	your	predicates,	
otherwise	the	automated	testing	procedure	will	not	be	able	to	find	your	
predicates	and	you	will	lose	marks.	Even	the	capitalisation	of	your	predicate	
names	must	be	as	given	below.

Question 1.1: List Processing

Write a predicate sumsq_even(Numbers, Sum) that sums the squares of only the
even numbers in a list of integers. For example,

?- sumsq_even([1,3,5,2,-4,6,8,-7], Sum).

Sum = 120

Note that it is the element of the list, not its position, that should be tested for oddness.
(The example computes 2*2 + (-4)*(-4) + 6*6 + 8*8). Think carefully about how the
predicate should behave on the empty list — should it fail or is there a reasonable value
that Sum can be bound to?

To decide whether a number is even or odd, you can use the built-in Prolog operator N
mod M, which computes the remainder after dividing the whole number N by the whole
number M. Thus a number N is even if the goal 0 is N mod 2 succeeds. Remember that
arithmetic expressions like X + 1 and N mod M are only evaluated if they appear after
the is operator. So 0 is N mod 2 works, but N mod 2 is 0 doesn't work.

Question 1.2: List Processing

Eliza was the name of the first “chatbot” written by Joseph Weizenbaum at MIT in the
mid-1960s. It pretended to be a psychiatrist, so that it only had to do simple
transformations on the input and turn a statement into a sentence. If a sentence is
represented by a list of words, an example of a simple transformation is:

?- eliza1([you,do,not,like,me], X).

X = [what,makes,you,say,i,do,not,like,you]

Here, the transformation is to put “What makes you say” in the front of the sentence and
replace “you” with “i” and “me” with “you”.

Write a Prolog program that takes a sentence in the form of a list with replacements:

you → i

me → you

my → your

and prepends the list [what, makes, you, say] to the transformed list.

• Your can write helper predicates, but the top-level predicate MUST be called “eliza1”.

• Assume that all sentence begins with “you”, but if you had “ … me and you …”
would that make a difference to your program?

• An input list that is empty i.e. “[]”, should return an empty list.

• Assume sentences are grammatical correct, so we won’t test something like [you, me].

• By default, SWI Prolog limits the number of elements in a list that it prints. You might
see the answer to your query ending with [a, b c | …]. You can force printing longe
lists with the directive:

:- set_prolog_flag(answer_write_options,[max_depth(0)]).

which you can put at the top of your file. max_depth(0) means no limit.

You MUST include “:–” at the start of the line. This is a Prolog directive.

Question 1.3: List Processing

The rules in Question 1.2 work if “you” starts a sentence but won’t make much sense
for an example like this:

?- eliza1([i,wonder,if,you,would,help,me,learn,prolog], X).

X = [what,makes,you,say,i,if,wonder,i,would,help,you,learn,prolog]

What would be better is:

?- eliza2([i,wonder,if,you,would,help,me,learn,prolog], X).

X = [what,makes,you,think,i,would,help,you]

Write a new predicate eliza2 (don’t forget the “2”) that takes a list of words:

[…, you, <some words>, me, …]

and creates a new list of the form:

[what, makes, you, think, i, <some words>, you]

i.e. skip the words before “you” and after “me”, and insert the words in between “you”
and “me” into the new sentence between “i” and “you”.

Hint: You can use the built-in predicate “append(X, Y, Z)” to do a lot of the work for
you. Remember, “append” can be used to split a list, as well as concatenating lists.

Question 1.4: Prolog Terms

Arithmetic expressions can be written in prefix format, e.g 1+2*3 can be written as
add(1, mul(2, 3)). If the operators available are add, sub, mul, div, write a
Prolog program, eval(Expr, Val), that will evaluate an expression, e.g.

?- eval(add(1, mul(2, 3)), V).

V = 7

?- eval(div(add(1, mul(2, 3)), 2), V).

V = 3.5

• If you wish, you may use the builtin predicate number(N), which is true when N is a
number and false otherwise (e.g. when N is a compound term like mul(2, 3).

• You will need is use the is built-in predicate to do the actual arithmetic.

• We will not test for division by 0, but if you include a check for division by 0, your
coding style will be much better.

Testing

This assignment will be marked on functionality in the first instance. However, you
should always adhere to good programming practices in regard to structure, style and
comments, as described in the Prolog Dictionary. Submissions that score very low in the
automarking will be examined by a human marker, and may be awarded some marks,
provided the code is readable.

Your code must work under the version of SWI Prolog used on the Linux machines in
the UNSW School of Computer Science and Engineering. If you develop your code on

http://www.cse.unsw.edu.au/~billw/prologdict.html#comment

any other platform, it is your responsibility to re-test and, if necessary, correct your code
when you transfer it to a CSE Linux machine prior to submission.

Your code will be run on a few simple tests when you submit. So, it is a good idea to
submit early and often so that potential problems with your code can be detected early.
You will be notified at submission time if your code produces any compiler warnings.
Please ensure that your final submission does not produce any such warnings
(otherwise, marks will be deducted).

Part 2 - Search

Question 1: Search Algorithms for the 15-Puzzle
In	this	question	you	will	construct	a	table	showing	the	number	of	states	expanded	
when	the	15-puzzle	is	solved,	from	various	starting	positions,	using	four	different	
searches:	

(i) Uniform Cost Search (with Dijkstra’s Algorithm)

(ii) Iterative Deepening Search

(iii) A*Search (using the Manhattan Distance heuristic)

(iv) Iterative Deepening A* Search

Go to theWebCMS. Under “Assignments” you will find Prolog Search Code
“prolog_search.zip”. Unzip the file and change directory to prolog search, e.g.

unzip prolog_search.zip

cd prolog_search

Start prolog and load puzzle15.pl and ucsdijkstra.pl by typing

[puzzle15].

[ucsdijkstra].  

Then invoke the search for the specified start10 position by typing

start10(Pos),solve(Pos,Sol,G,N),showsol(Sol).

When the answer comes back, just hit Enter/Return. This version of Uniform Cost
Search (UCS) uses Dijkstra’s algorithm which is memory efficient, but is designed to
return only one answer. Note that the length of the path is returned as G, and the total
number of states expanded during the search is returned as N.

a) Draw up a table with four rows and five columns. Label the rows as UCS, IDS, A*

and IDA*, and the columns as start10, start12, start20, start30
and start40. Run each of the following algorithms on each of the 5 start states:

(i)[ucsdijkstra]

(ii)[ideepsearch]

(iii)[astar]

(iv)[idastar]

In each case, record in your table the number of nodes generated during the search.
If the algorithm runs out of memory, just write “Mem” in your table. If the code
runs for five minutes without producing out- put, terminate the process by typing
Control-C and then “a”, and write “Time” in your table. Note that you will need
to re-start prolog each time you switch to a different search.

b) Briefly discuss the efficiency of these four algorithms (including both time and
memory usage).

Question 2: Heuristic Path Search for 15-Puzzle

In this question you will be exploring an Iterative Deepening version of the Heuristic
Path Search algorithm discussed in the Week 3 Tutorial. Draw up a table in the
following format:

The top row of the table has been filled in for you (to save you from running some
rather long computations).

(a)	Run [greedy] for start50, start60 and start64, and record the values returned for G
and N in the last row of your table (using the Manhattan Distance heuristic defined
in puzzle15.pl).

(b) Now copy idastar.pl to a new file heuristic.pl and modify the code of this new file so
that it uses an Iterative Deepening version of the Heuristic Path Search algorithm
discussed in the Weak 3 Tutorial Exercise, with w = 1.2 .  
In your submitted document, briefly show the section of code that was changed, and
the replacement code.

(c) Run [heuristic] on start50, start60 and start64 and record the values of G and N in
your table. Now modify your code so that the value of w is 1.4, 1.6 ; in each case,
run the algorithm on the same three start states and record the values of G and N in
your table.

(d) Briefly discuss the tradeoff between speed and quality of solution for these five
algorithms.

In each case, record in your table the number of nodes generated dur-
ing the search. If the algorithm runs out of memory, just write “Mem”
in your table. If the code runs for five minutes without producing out-
put, terminate the process by typing Control-C and then “a”, and write
“Time” in your table. Note that you will need to re-start prolog each
time you switch to a different search.

(b) Briefly discuss the efficiency of these four algorithms (including both time
and memory usage).

Question 2: Heuristic Path Search for 15-Puzzle (2 marks)

In this question you will be exploring an Iterative Deepening version of the
Heuristic Path Search algorithm discussed in the Week 4 Tutorial. Draw up
a table in the following format:

start50 start60 start64
IDA∗ 50 14642512 60 321252368 64 1209086782
1.2
1.4
1.6

Greedy

The top row of the table has been filled in for you (to save you from running
some rather long computations).

(a) Run [greedy] for start50, start60 and start64, and record the values
returned for G and N in the last row of your table (using the Manhattan
Distance heuristic defined in puzzle15.pl).

(b) Now copy idastar.pl to a new file heuristic.pl and modify the code of
this new file so that it uses an Iterative Deepening version of the Heuristic
Path Search algorithm discussed in the Week 4 Tutorial Exercise, with
w = 1.2 .

In your submitted document, briefly show the section of code that was
changed, and the replacement code.

(c) Run [heuristic] on start50, start60 and start64 and record the
values of G and N in your table. Now modify your code so that the value
of w is 1.4, 1.6 ; in each case, run the algorithm on the same three start
states and record the values of G and N in your table.

(d) Briefly discuss the tradeoff between speed and quality of solution for
these five algorithms.

2

Submitting your assignment

Your submission will consist of two files: assign1_part1.pl should contain all of your
Prolog programs; and assign1_part2.pdf should contain the results of your search
experiments in part 2.

To hand in, log in to a School of CSE Linux workstation or server, make sure that your
files are in the current working directory, and use the Unix command:

% give cs3411 assign1 assign1_part1.pl assign1_part2.pdf

Please make sure your code works on CSE's Linux machines and generates no
warnings. Remove all test code from your submission. Make sure you have named
your predicates correctly.
You can submit as many times as you like - later submissions will overwrite earlier
ones. Once give has been enabled, you can check that your submission has been
received by using one of these commands:

The submission deadline is Friday 19 March, 10:00 pm.

10% penalty will be applied to the (maximum) mark for every 24 hours late after the
deadline.

Questions relating to the project can be posted to the forums on the course Web site.

If you have a question that has not already been answered on the forum, you can email
it to cs3411@unsw.edu.au

Plagiarism Policy

Group submissions are not allowed. Your program must be entirely your own work.
Plagiarism detection software will be used to compare all submissions pairwise
(including submissions for any similar projects from previous years) and serious
penalties will be applied, particularly in the case of repeat offences.

DO NOT COPY FROM OTHERS. DO NOT ALLOW ANYONE TO SEE YOUR
CODE
Please refer to the UNSW Policy on Academic Honesty and Plagiarism if you require
further clarification on this matter.

mailto:cs3411@unsw.edu.au
https://student.unsw.edu.au/plagiarism

