
Definite Clause Grammars

COMP3411/COMP9814 - Artificial Intelligence

Logic Grammars

• A grammar rule is a formal device for defining sets of sequences of
symbols.

• Sequence may represent a statement in a programming language.

• Sequence may be a sentence in a natural language such as English.

BNF Notation

• A BNF grammar specification consists of production rules.

<s> ::= a b

<s> ::= a <s> b

• First rule says that whenever s appears in a string, it can be rewritten with the
sequence ab.

• Second rule says that s can be rewritten with a followed by s followed by b.

• s is a non-terminal symbol.

• a and b are terminal symbols.

• A grammar rule can generate a string, e.g.

s → a s b

a s b → a a s b b

a a s b b → a a a b b b

BNF Notation

Grammar for a robot arm
• Two commands for a robot arm are: up and down, i.e. move one step up or

down respectively.

<move> ::= <step>

<move> ::= <step> <move>

<step> ::= up

<step> ::= down

• The grammar is recursive and has a termination rule.

Definite Clause Grammars
• Prolog has a DCG grammar notation that parses sequences of symbols in

a list.

s --> [a], [b].

s --> [a], s, [b].

?- s([a, a, b, b], X).

X = []

?- s([a, c, b], X).

false.

move --> step.

move --> step, move.

step --> [up].

step --> [down].

DCGs are translated into Prolog
s([a, b|X], X).

s([a|X], Y) :-

 s(X, [b|Y]).

move(X, Y) :-

 step(X, Y).

move(X, Z) :-

 step(X, Y),

 move(Y, Z).

step([up|X], X).

step([down|X], X).

s --> [a], [b].

s --> [a], s, [b].

move --> step.

move --> step, move.

step --> [up].

step --> [down].

[a, a, b, b]	 (2)

[a, b, b]	 (2)

[b]	 (1)

[]

A simple subset of English
sentence --> noun_phrase, verb_phrase.

noun_phrase --> determiner, noun.

verb_phrase --> verb, noun_phrase.

determiner --> [a].

determiner --> [the].

noun --> [cat].

noun --> [mouse].

verb --> [scares].

verb --> [hates].

E.g.

the cat scares the mouse

the mouse hates the cat

the mouse scares the mouse

Context Dependence

• Programming languages usually use context free grammars.

– Type of symbol is determined completely by its position in sentence.

• Natural language is often context dependent.

– Correctness of one symbol depends on type of other symbols in
sentence.

– E.g. number in English.

Context Dependence

noun --> [cats].

verb --> [hate].

• Adding these rules to the grammar makes the following sentence legal:

the mouse hate the cat.

• Additional constraints must be added to the grammar to ensure that the
number of all the parts of speech is consistent.

Context Dependence
sentence -->

noun_phrase(Number),

verb_phrase(Number).

noun_phrase(Number) -->

determiner(Number),

noun(Number).

verb_phrase(Number) -->

verb(Number),

noun_phrase(_).

determiner(singular) --> [a].

determiner(_) --> [the].

noun(singular) --> [cat].

noun(singular) --> [mouse].

noun(plural) --> [mice].

verb(singular) --> [hates].

verb(plural) --> [hate].

Parse Trees
sentence

noun_phrase

determiner noun

the cat

verb_phrase

verb noun_phrase

determiner noun

the mouse

scares

Parse Trees

• Leaves are labelled by the terminal symbols of the grammar

• Internal nodes are labelled by non-terminals

• The parent-child relation is specified by the rules of the grammar.

Parse Trees
sentence(sentence(NP, VP)) -->

noun_phrase(Number, NP),

verb_phrase(Number, VP).

noun_phrase(Number, noun_phrase(Det, Noun)) -->

determiner(Number, Det),

noun(Number, Noun).

verb_phrase(Number, verb_phrase(V, NP)) -->

verb(Number, V),

noun_phrase(_, NP).

determiner(singular, determiner(a)) --> [a].

determiner(_, determiner(the)) --> [the].

noun(singular, noun(cat)) --> [cat].

noun(plural, noun(cats)) --> [cats].

noun(singular, noun(mouse)) --> [mouse].

noun(plural, noun(mice)) --> [mice].

verb(singular, verb(scares)) --> [scares].

verb(singular, verb(hates)) --> [hates].

verb(plural, verb(hate)) --> [hate].

DCG Translation

sentence(sentence(NP, VP)) -->

noun_phrase(Number, NP),

verb_phrase(Number, VP).

sentence(sentence(A, D), B, F) :-

 noun_phrase(C, A, B, E),

 verb_phrase(C, D, E, F).

Input list Remainder

From parse tree to meaning

?- sentence(X, [the, mouse, hates, the, cat], Y).

X = sentence( 
noun_phrase(determiner(the), noun(mouse)),  
verb_phrase(verb(hates),  

noun_phrase(determiner(the), noun(cat))))

Y = []

• In a two step understanding system, the parse tree returned from the
grammar rules could be passed to a semantic analyser.

Defining the meaning of a sentence
sentence(VP) -->

noun_phrase(Actor),

verb_phrase(Actor, VP).

noun_phrase(NP) -->

proper_noun(NP).

verb_phrase(Actor, VP) -->

intrans_verb(Actor, VP).

verb_phrase(Subject, VP) -->

trans_verb(Subject, Object, VP),

noun_phrase(Object).

intrans_verb(Actor, paints(Actor)) --> [paints].

trans_verb(Subject, Object, likes(Subject, Object)) --> [likes].

proper_noun(john) --> [john].

proper_noun(annie) --> [annie].

Defining the meaning of a sentence
?- sentence(X, [john, paints], Y).

C|>sentence(_0)

C||>noun_phrase(_1)

C|||>proper_noun(_1)

E|||<proper_noun(john)

E||<noun_phrase(john)

C||>verb_phrase(john, _0)

C|||>intrans_verb(john, _0)

E|||<intrans_verb(john, paints(john))

E||<verb_phrase(john, paints(john))

E|<sentence(paints(john))

X = paints(john)

Y = []

Defining the meaning of a sentence
?- sentence(X, [john, likes, annie], _).

C|>sentence(_0)

C||>noun_phrase(_1)

C|||>proper_noun(_1)

E|||<proper_noun(john)

E||<noun_phrase(john)

C||>verb_phrase(john, _0)

C|||>intrans_verb(john, _0)

R||>verb_phrase(john, _0)

C|||>trans_verb(john, _9, _0)

E|||<trans_verb(john, _9, likes(john, _9))

C|||>noun_phrase(_9)

C||||>proper_noun(john)

R||||>proper_noun(annie)

E||||<proper_noun(annie)

E|||<noun_phrase(annie)

E||<verb_phrase(john, likes(john, annie))

E|<sentence(likes(john, annie))

X = likes(john, annie)

The Determiner 'a'

• 'A person paints' does not mean paints(person).

• In this sentence 'person' is not a specific person. The correct meaning

should be:

exists(X, person(X) & paints(X))

• The general form for dealing with 'a'

exists(X, person(X) & Assertion)

The determiner 'every'

E.g.

Every student studies

all(X, student(X) -> studies(X))

'every' indicates the presence of a universally quantified variable.

Relative Clauses
E.g.

Every person that paints admires Monet

Can be expressed in a logical form as:

For all X, if X is a person and X paints then X admires Monet.

in Prolog:

all(X, person(X) & paints(X) -> admires(X, monet)

in general:

all(X, Property1 & Property2 -> Assertion)

The Complete Grammar
?- op(700, xfy, &).

?- op(800, xfy, ->).

determiner(X, Property, Assertion, all(X, (Property -> Assertion))) --> [every].

determiner(X, Property, Assertion, exists(X, (Property & Assertion))) --> [a].

noun(X, man(X)) --> [man].

noun(X, woman(X)) --> [woman].

noun(X, person(X)) --> [person].

proper_noun(john) --> [john].

proper_noun(annie) --> [annie].

proper_noun(monet) --> [monet].

trans_verb(X, Y, likes(X, Y)) --> [likes].

trans_verb(X, Y, admires(X, Y)) --> [admires].

intrans_verb(X, paints(X)) --> [paints].

The Complete Grammar
sentence(S) -->

noun_phrase(X, Assertion, S),

verb_phrase(X, Assertion).

noun_phrase(X, Assertion, S) -->

determiner(X, Property12, Assertion, S),

noun(X, Property1),

rel_clause(X, Property1, Property12).

noun_phrase(X, Assertion, Assertion) -->

proper_noun(X).

verb_phrase(X, Assertion) -->

trans_verb(X, Y, Assertion1),

noun_phrase(Y, Assertion1, Assertion).

verb_phrase(X, Assertion) -->

intrans_verb(X, Assertion).

rel_clause(X, Property1, (Property1 & Property2)) -->

[that],

verb_phrase(X, Property2).

rel_clause(_, Property, Property).

The Complete Grammar
sentence(S) -->

noun_phrase(X, Assertion, S),

verb_phrase(X, Assertion).

noun_phrase(X, Assertion, S) -->

determiner(X, Property12, Assertion, S),

noun(X, Property1),

rel_clause(X, Property1, Property12).

noun_phrase(X, Assertion, Assertion) -->

proper_noun(X).

verb_phrase(X, Assertion) -->

trans_verb(X, Y, Assertion1),

noun_phrase(Y, Assertion1, Assertion).

verb_phrase(X, Assertion) -->

intrans_verb(X, Assertion).

rel_clause(X, Property1, (Property1 & Property2)) -->

[that],

verb_phrase(X, Property2).

rel_clause(_, Property, Property).

determiner(X, Property, Assertion, all(X, (Property -> Assertion))) --> [every].

The Complete Grammar
sentence(S) -->

noun_phrase(X, Assertion, S),

verb_phrase(X, Assertion).

noun_phrase(X, Assertion, S) -->

determiner(X, Property12, Assertion, S),

noun(X, Property1),

rel_clause(X, Property1, Property12).

noun_phrase(X, Assertion, Assertion) -->

proper_noun(X).

verb_phrase(X, Assertion) -->

trans_verb(X, Y, Assertion1),

noun_phrase(Y, Assertion1, Assertion).

verb_phrase(X, Assertion) -->

intrans_verb(X, Assertion).

rel_clause(X, Property1, (Property1 & Property2)) -->

[that],

verb_phrase(X, Property2).

rel_clause(_, Property, Property).

Variable Bindings

noun_phrase(X, Assertion, S) -->

determiner(X, Property12, Assertion, S),

noun(X, Property1),

rel_clause(X, Property1, Property12).

determiner(X, Property, Assertion, all(X, (Property -> Assertion))) --> [every].

?- sentence(X, [every,person,that,paints,admires,monet],_).

X = all(_24512, person(_24512)& paints(_24512)->admires(_24512, monet))

Result

Annotations

noun_phrase(NP) --> proper_noun(NP), {asserta(history(NP))}.

• Annotations allow you to write any Prolog code you like to support the
processing of the grammar.

• Anything in between ‘{‘ and ‘}’

• Asserta stores a clause in Prolog’s data base.

• The new clause becomes the first in the database

Assert and Asserta 
add clauses to the database

?- assert(f(a)).

?- assert(f(b)).

?- listing(f/1).

f(a).

f(b).

?- asserta(f(a)).

?- asserta(f(b)).

?- listing(f/1).

f(b).

f(a).

Retract deletes clauses

?- assert(f(a)).

?- assert(f(b)).

?- listing(f/1).

f(a).

f(b).

?- retract(f(X)).

X = a ;

X = b.

?- listing(f/1).

:- dynamic f/1.

true.

Frames
• Objects are represented by a list of properties and values

• E.g.

– object(shirt, [colour(green)]).

– event(1, [ 
	 actor(john), 
	 action(buy), 
	 object(shirt, [colour(green)]), 
	 location(myers) 
])

• “Understanding” a sentence means filling in the slots.

Resolving References

• Use Prolog annotations in grammar to build frame’s property list.

• new_event asserts events in reverse order.

• Database events can be used to resolve references

Resolving References
Suppose history is:

history(object(John, [isa(person), gender(masculine), number(singular)])).

history(object(annie, [isa(person), gender(feminine), number(singular)])).

Simple example of pronoun resolution:

pronoun(Resolvent) --> [he],  
{resolve([gender(masculine), number(singular)], Resolvent)}.

pronoun(Resolvent) --> [she],  
{resolve([gender(feminine), number(singular)], Resolvent)}.

resolve(Properties, Name) :-  
history(object(Name, Props)),  
subset(Properties, Props).

