
Constraint Programming

Finite Domain22 4. Reasoning With Constraints

{1,2,3,4} {1,2,3,4}

{1,2,3,4} {1,2,3,4}

{1,2,3,4}

A B

D
C

E

B >= A

A > D B ≠ C

C ≠ D

D > E C > E

C ≠ A

C ≠ D+1

• The following table shows which elements of a domain are deleted at each
step, and which arc is responsible for removing the element:

Arc Relation Value(s) Removed
hD, Ei D > E D = 1
hE, Di D > E E = 4
hC, Ei C > E C = 1
hD, Ai A > D D = 4
hA, Di A > D A = 1&A = 2
hB, Ai B � A B = 1&B = 2
hE, Di D > E E = 3

At this stage arc consistency has stopped. Here is the arc-constraint graph:

{3,4} {3,4}

{2,3} {2,3,4}

{1,2}

A B

D
C

E

B >= A

A > D B ≠ C

C ≠ D

D > E C > E

C ≠ A

C ≠ D+1

Note that, if you had one arc between C and D labelled with C 6= D+ 1^C 6=
D, then C = 3 can be removed by considering the arc hC, Di. If you have two
arcs, C = 3 cannot be removed by arc consistency.

Arc Consistency

22 4. Reasoning With Constraints

{1,2,3,4} {1,2,3,4}

{1,2,3,4} {1,2,3,4}

{1,2,3,4}

A B

D
C

E

B >= A

A > D B ≠ C

C ≠ D

D > E C > E

C ≠ A

C ≠ D+1

• The following table shows which elements of a domain are deleted at each
step, and which arc is responsible for removing the element:

Arc Relation Value(s) Removed
hD, Ei D > E D = 1
hE, Di D > E E = 4
hC, Ei C > E C = 1
hD, Ai A > D D = 4
hA, Di A > D A = 1&A = 2
hB, Ai B � A B = 1&B = 2
hE, Di D > E E = 3

At this stage arc consistency has stopped. Here is the arc-constraint graph:

{3,4} {3,4}

{2,3} {2,3,4}

{1,2}

A B

D
C

E

B >= A

A > D B ≠ C

C ≠ D

D > E C > E

C ≠ A

C ≠ D+1

Note that, if you had one arc between C and D labelled with C 6= D+ 1^C 6=
D, then C = 3 can be removed by considering the arc hC, Di. If you have two
arcs, C = 3 cannot be removed by arc consistency.

22 4. Reasoning With Constraints

{1,2,3,4} {1,2,3,4}

{1,2,3,4} {1,2,3,4}

{1,2,3,4}

A B

D
C

E

B >= A

A > D B ≠ C

C ≠ D

D > E C > E

C ≠ A

C ≠ D+1

• The following table shows which elements of a domain are deleted at each
step, and which arc is responsible for removing the element:

Arc Relation Value(s) Removed
hD, Ei D > E D = 1
hE, Di D > E E = 4
hC, Ei C > E C = 1
hD, Ai A > D D = 4
hA, Di A > D A = 1&A = 2
hB, Ai B � A B = 1&B = 2
hE, Di D > E E = 3

At this stage arc consistency has stopped. Here is the arc-constraint graph:

{3,4} {3,4}

{2,3} {2,3,4}

{1,2}

A B

D
C

E

B >= A

A > D B ≠ C

C ≠ D

D > E C > E

C ≠ A

C ≠ D+1

Note that, if you had one arc between C and D labelled with C 6= D+ 1^C 6=
D, then C = 3 can be removed by considering the arc hC, Di. If you have two
arcs, C = 3 cannot be removed by arc consistency.

Constraint Ordering is Important

solve(A, B, C, D, E) :-

domain(C),

domain(D),

domain(A),

domain(B),

domain(E),

A > D,

D > E,

C =\= A,

C > E,

C =\= D,

B >= A,

B =\= C,

C =\= D + 1.

solve(A, B, C, D, E) :-

domain(C),

domain(D),

C =\= D,

C =\= D + 1,

domain(A),

A > D,

C =\= A,

domain(B),

B >= A,

B =\= C,

domain(E),

C > E,

D > E.

domain(1).

domain(2).

domain(3).

domain(4).

Much faster !

CLP(FD)

• SWI Prolog (and others) include constraint programming libraries

• Others: ECLiPSe, YAP, GNU-Prolog, Ciao, …

• Non-standard extensions, so beware!

• They change Prolog’s normal depth-first search for variable bindings to
incorporate constraint solving methods (including arc consistency, etc).

Example

:- use_module(library(clpfd)).

solve(A, B, C, D, E) :-

 [A, B, C, D, E] ins 1..4,

 A #> D,

 D #> E,

 C #\= A,

 C #> E,

 C #\= D,

 B #>= A,

 B #\= C,

 C #\= D + 1,

labeling([], [A, B, C, D, E]).

Declare domain

Assign values

‘#’ means operator is a constraint,
satisfied by constraint solving
rather than depth-first search

Solution to FD Problem
?- solve(A, B, C, D, E).

A = 3,

B = 3,

C = 4,

D = 2,

E = 1 ;

A = 4,
B = 4,
C = 2,
D = 3,
E = 1

Consistency Check
?- constraints(A, B, C, D, E).

A in 3..4,

C #\= A,

B #>= A,

D #=< A + -1,

C in 2..4,

C #\= D+1,

B #\= C,

C #\= D,

E #=< C + -1,

D in 2..3,

E #=< D + -1,

E in 1..2,

B in 3..4

Cryptarithmetic

D O N A L D

+ G E R A L D  

———————————  
R O B E R T

Cryptarithmetic
% Cryptarithmetic puzzle DONALD + GERALD = ROBERT in CLP(FD)

:- use_module(library(clpfd)).

solve([D,O,N,A,L,D],[G,E,R,A,L,D],[R,O,B,E,R,T]) :-

Vars = [D,O,N,A,L,G,E,R,B,T],							 % All variables in the puzzle

Vars ins 0..9,											 % They are all decimal digits

all_different(Vars),										 % They are all different

100000*D + 10000*O + 1000*N + 100*A + 10*L + D +

100000*G + 10000*E + 1000*R + 100*A + 10*L + D #=
100000*R + 10000*O + 1000*B + 100*E + 10*R + T,

labeling([], Vars).

?- solve(X, Y, Z).

X = [5, 2, 6, 4, 8, 5],

Y = [1, 9, 7, 4, 8, 5],

Z = [7, 2, 3, 9, 7, 0]

N-Queens
% The k-th element of Cols is the column number of the queen in row k.

:- use_module(library(clpfd)).

n_queens(N, Qs) :-

length(Qs, N),

Qs ins 1..N,

safe_queens(Qs).

safe_queens([]).

safe_queens([Q|Qs]) :-

safe_queens(Qs, Q, 1),

safe_queens(Qs).

COMP3411/9414/9814 18s1 Constraint Satisfaction Problems 6

n-Queens Puzzle as a CSP

Assume one queen in each column. Which row does each one go in?

Variables: Q1, Q2, Q3, Q4
Domains: Di = {1,2,3,4}

Constraints:
Qi != Qj (cannot be in same row)
|Qi−Qj| != |i− j| (or same diagonal)

UNSW c©Alan Blair, 2013-8

[1, 4, 1, 3]

safe_queens([], _, _).

safe_queens([Q|Qs], Q0, D0) :-

Q0 #\= Q,

abs(Q0 - Q) #\= D0,

D1 #= D0 + 1,

safe_queens(Qs, Q0, D1).

?- n_queens(8, Qs), labeling([ff], Qs).

CLP(R) - constraints over reals

Mortgage relation between the following arguments:

•P is the balance at T0

•T is the number of interest periods (e.g., years)

• I is the interest ratio where e.g., 0.1 means 10%

•B is the balance at the end of the period

•MP is the withdrawal amount for each interest

period.

:- use_module(library(clpr)).

mg(P, T, I, B, MP):-

 { T = 1,

 B + MP = P * (1 + I)

 }.

mg(P, T, I, B, MP):-

 { T > 1,

 P1 = P * (1 + I) - MP,

 T1 = T - 1

 },

 mg(P1, T1, I, B, MP).

?- mg(1000, 30, 5/100, B, 0).

B = 4321.9423751506665

Back to Standard Prolog:

Controlling Execution

Prolog – Finding Answers

Prolog uses depth first search to find answers

a(1).

a(2).

a(3).

b(1).

b(2).

b(3).

c(A, B) :- a(A), b(B).

Depth-first solution of query c(A,B)

A = 1, B = 1

Backtrack to find another solution

A = 1, B = 2

Backtrack to find another solution

A = 1, B = 3

Backtrack to find another solution

A = 2, B =1

The Cut (!)

• Sometimes we need a way of preventing Prolog from finding all
solutions

• The cut operator is a built-in predicate that prevents backtracking

• It violates the declarative reading of a Prolog programming

• Use it VERY sparingly!!!

Backtracking
lectures(maurice, Subject), studies(Student, Subject)?

Subject = 1021

Student = jack ;

Subject = 4411

Student = Jill ;

Subject = 4411

Student = Henry

lectures(maurice, Subject), studies(Student, Subject)

lectures(maurice, 1021)

studies(jack, 1021)

lectures(maurice, 4411)

studies(jill, 4411) studies(henry, 4411)

Cut prunes the search
lectures(maurice, Subject), !, studies(Student, Subject)?

Subject = 1021

Student = jack ;

Subject = 4411

Student = Jill ;

Subject = 4411

Student = Henry

lectures(maurice, Subject), !, studies(Student, Subject)

lectures(maurice, 1021)

studies(jack, 1021)

lectures(maurice, 4411)

studies(jill, 4411) studies(henry, 4411)

Example

Rules for determining the degree of pollution
Rule 1: if X < 3 then Y = normal
Rule 2: if 3 ≤ X and X < 6 then Y = alert1
Rule 3: if 6 ≤ X then Y = alert2

In Prolog: f(Concentration, Pollution_Alert)

 f(X, normal) :- X < 3. % Rule1

 f(X, alert1) :- 3 =< X, X < 6. % Rule2

 f(X, alert2) :- 6 =< X. % Rule3

Concentration X

Alternative Version

 f(X, normal) :- X < 3, !. % Rule1

 f(X, alert1) :- X < 6, !. % Rule2

 f(X, alert2). % Rule3

Which version is easier to read?

Operators

Operator Notation

• Operators are just compound (i.e. functional) terms

 2*a + b*c = +(*(2,a), *(b,c))

• +, * are infix operators in Prolog

• They are only interpreted as arithmetic expressions when the appear on the right-hand

side of the is operator. 

Operator Expressions are also Trees
• For example: (a + b) * (c - 5)

• Written as an expression with the functors:

TUDI ARITMETIČNI IZRAZI
SO DREVESA

• Na primer: (a + b) * (c - 5)

• Zapisano kot izraz s funktorji:

 *(+(a, b), -(c, 5))

 *
 + -
 a b c 5

Operators in Prolog
• You can define your own operators.

 :- op(Precedence, Type, Name).

• Precedence is a number between 0 and 1200.

For example,

• the precedence of “ = “ is 700,

• the precedence of “ + ” is 500,

• the precedence of “ * “ is 400.

Operators in Prolog
 :- op(Precedence, Type, Name).

• Type is an atom specifying the associativity of the operator.

• Infix operators:

• yfx - left associate (e.g. 1 + 2 + 3 = ((1 + 2) + 3)

• xfy - right associative (e.g. x ^ 2 ^ 2 = (x ^ (2 ^ 2))

• xfx - non-associative (e.g. wa = green; a = b = c is not valid)

• Prefix operators

• fy, fx (associative, non-associative)

• Postfix opertators

• yf, xf (associative, non-associative)

+

+ 3

1 2

^

x ^

1 2

Predefined Operators
• Operators with the same properties can be specified in one statement by giving a list of their

names instead of a single name as third argument of op.

• Operator definitions don't specify the meaning of an operator, only how it can be used
syntactically.

• Operator definition doesn't say how a query involving operator is evaluated to true.

:- op(1200, xfx, [:-, —>]).

:- op(1200, fx, [:-, ?-]).

:- op(1100, xfy, [;]).

:- op(1000, xfy, [‘,’]).

:- op(700, xfx, [=, is, =.., ==. \==, \==, =:=, =\=, <, >, =<, >=]).

:- op(500, yfx, [+, -]).

:- op(500, fx, [+, -]).

:- op(300, xfx, [mod]).

:- op(200, xfy, [^]).

User Defined Operators
Relations can be defined as operators, e.g.

has(peter, information).

supports(floor, table).

can be written with operators:

	 :- op(600, xfx, has).  
:- op(600, xfx, supports).

peter has information.

floor supports table.

Example - IF statement

% Operator declarations

:- op(500, fx, if).  
:- op(400, xfx, then).

:- op(300, xfx, else).

% Interpreter

if Condition then S1 else S2 :-

 Condition, !, S1. % Don’t allow backtracking if Condition is true
if Condition then S1 else S2 :-

 S2.

Built-in Predicates

• Testing the type of terms

• Construction and decomposition of terms: =. . , functor,
arg, name

• Comparison

• bagof, setof and findall

• Input, output

Testing the type of terms

var(X)	 true if X is unbound or instantiated to an unbound variable

nonvar(X)	 X is not a variable or instantiated to an unbound variable

atom(X)	 true if X is an atom

integer(X)	 true if X is an integer

float(X)	 true if X is a real number

number(X)	 true if X is a number

atomic(X)	 true if X is a number or an atom

compound(X)	 true if X is a compound term (a structure)

is_list(X)	 true if X is [] or a non-empty list

Example: Arithmetic Operations

...,

number(X), % Value of X number? 

number(Y), % Value of Y number? 

 Z is X + Y, % Then addition is possible

...

Construction and decomposition of terms:  
=..	,	functor,	arg,	name	

 Term =.. [Functor, Arg1, Arg2, Arg3, ...] % “univ”

 Term =.. L

true if L is a list that conations the principal functor of Term, followed by its
arguments.

Example:

 ?- f(a, b) =.. L.

 L = [f, a, b]

 ?- T =.. [rectangle, 3,5].

 T = rectangle(3, 5)

Construction and decomposition of terms:  
=..	,	functor,	arg,	name	

?- functor(a(), N, A).

N = a, A = 0.

?- functor(T, a, 0).

T = a.

?- arg(2, f(a, b), X).

X = b.

?- arg(N, f(a, b), V).

N = 1, V = a ;

N = 2, V = b.

Substitute

substitute(Subterm, Term, Subterm1, Term1)

Find all occurrences of Subterm in Term and substitute with Subterm1 to get Term1.

?- substitute(sin(x), 2*sin(x)*f(sin(x)), t, F).

F = 2*t*f(t)

% Case 1: Substitute whole term

substitute(Term, Term, Term1, Term1) :- !.

% Case 2: Nothing to substitute if Term atomic

substitute(_, Term, _, Term) :-

 atomic(Term), !.					 % Term is a constant

% Case 3: Do substitution on arguments

substitute(Sub, Term, Sub1, Term1) :-

Term =.. [F | Args],						 % Get arguments

substlist(Sub, Args, Sub1, Args1),	 % Perform substitution on them

Term1 =.. [F | Args1].					 % Construct Term1

% substlist(SubTerm, Term_List, NewSubTerm, NewTerm_List)

Substitute

% substlist(SubTerm, Term_List, NewSubTerm, NewTerm_List)

% End of list, nothing to do

substlist(_, [], _, []).

% Otherwise, try substituting recursively

substlist(A, [X|List], B, [Y|List1]) :-

 substitute(A, X, B, Y),

substlist(A, List, B, List1).

Substitute

Example - Use of substitute	/	4

?- E0 = (a+b) * (a-b),

 substitute(a, E0, 6, E1),

 substitute(b, E1, 3, E2),

 Value is E2.

E1 = (6+b) * (6-b)

E2 = (6+3) * (6-3)

Value = 27

Comparison

 X = Y	 true if X and Y match

 X == Y	 if X and Y are identical

X \== Y	 if X and Y are not identical

X @< Y	 X is lexicographically smaller then Y, term X precedes term Y
by alphabetical or numerical ordering 
(e.g. paul @< peter)

findall, bagof, setof
% Find all values of Object that satisfy Condition and collect in List
findall(Object, Condition, List)  

% Same as findall except only stores unique values and fails if no solution found

bagof(Object, Condition, List

% Find all values of Object that satisfy Condition and collect in sorted List

setof(Object, Condition, List)

Example: robot world

 ?- findall(B, on(B,_), L). % L is a List of all blocks

 L = [a,b,c,d,e]  

Procedure findall, bagof, setof
Examples:

child(joze, ana). child(miha, ana).

child(lili, ana). child(lili, andrej).

?- findall(X, child(X, ana), S).

S = [joze, miha, lili]

?- setof(X, child(X, ana), S).

S = [joze, lili, miha]

?- findall(X, child(X, Y), S).

S = [joze, miha, lili, lili]

?- bagof(X, child(X, Y), S).

S = [joze, miha, lili]

Y = ana;

Input / Output
consult(File)	 % Load File into Prolog’s database

see(File)	 % File becomes the current input stream

see(user)	 % user input (i.e. from terminal)

seen	 % close the current input stream

seeing(X)	 % binds X to the current input file

tell(File)	 % File becomes the current output stream

tell(user)	 % user output (i.e. output to terminal)

told	 % close the current output stream

telling(X) % binds X to the current output file

Input / Output

write(Term)	 % write Term to current output stream

writeln(Term)	 % write Term and append newline

nl	 % write newline to current output stream

read(Term)	 % read Term from current input stream

SWI Prolog Manual

There is a lot more to learn in the user manual:

https://www.swi-prolog.org/pldoc/doc_for?object=manual

Breadth-First Search

Each	path	on	the	frontier	
has	either	the	same	
number	of	arcs	or	one	
more	arc	than	the	next	
element	of	the	frontier	
that	will	be	selected.

solve(Start, Solution) :- breadthfirst([[Start]], Solution).

breadthfirst([[Node|Path]|_], [Node|Path]) :- goal(Node).

breadthfirst([Path|Paths], Solution) :-

 extend(Path, NewPaths),

 append(Paths, NewPaths, Paths1),

 breadthfirst(Paths1, Solution).

extend([Node|Path], NewPaths) :-

 findall([Neighbour, Node|Path], new_neighbour([Neighbour, Node|Path]), NewPaths).

new_neighbour([Neighbour, Node|Path]) :-

 edge(Node, Neighbour),

 \+ member(Neighbour, [Node|Path]).

Breadth-First Search

