
Constraint Programming

Finite Domain22 4. Reasoning With Constraints

{1,2,3,4} {1,2,3,4}

{1,2,3,4} {1,2,3,4}

{1,2,3,4}

A B

D
C

E

B >= A

A > D B ≠ C

C ≠ D

D > E C > E

C ≠ A

C ≠ D+1

• The following table shows which elements of a domain are deleted at each
step, and which arc is responsible for removing the element:

Arc Relation Value(s) Removed
hD, Ei D > E D = 1
hE, Di D > E E = 4
hC, Ei C > E C = 1
hD, Ai A > D D = 4
hA, Di A > D A = 1&A = 2
hB, Ai B � A B = 1&B = 2
hE, Di D > E E = 3

At this stage arc consistency has stopped. Here is the arc-constraint graph:

{3,4} {3,4}

{2,3} {2,3,4}

{1,2}

A B

D
C

E

B >= A

A > D B ≠ C

C ≠ D

D > E C > E

C ≠ A

C ≠ D+1

Note that, if you had one arc between C and D labelled with C 6= D+ 1^C 6=
D, then C = 3 can be removed by considering the arc hC, Di. If you have two
arcs, C = 3 cannot be removed by arc consistency.

Arc Consistency

22 4. Reasoning With Constraints

{1,2,3,4} {1,2,3,4}

{1,2,3,4} {1,2,3,4}

{1,2,3,4}

A B

D
C

E

B >= A

A > D B ≠ C

C ≠ D

D > E C > E

C ≠ A

C ≠ D+1

• The following table shows which elements of a domain are deleted at each
step, and which arc is responsible for removing the element:

Arc Relation Value(s) Removed
hD, Ei D > E D = 1
hE, Di D > E E = 4
hC, Ei C > E C = 1
hD, Ai A > D D = 4
hA, Di A > D A = 1&A = 2
hB, Ai B � A B = 1&B = 2
hE, Di D > E E = 3

At this stage arc consistency has stopped. Here is the arc-constraint graph:

{3,4} {3,4}

{2,3} {2,3,4}

{1,2}

A B

D
C

E

B >= A

A > D B ≠ C

C ≠ D

D > E C > E

C ≠ A

C ≠ D+1

Note that, if you had one arc between C and D labelled with C 6= D+ 1^C 6=
D, then C = 3 can be removed by considering the arc hC, Di. If you have two
arcs, C = 3 cannot be removed by arc consistency.

22 4. Reasoning With Constraints

{1,2,3,4} {1,2,3,4}

{1,2,3,4} {1,2,3,4}

{1,2,3,4}

A B

D
C

E

B >= A

A > D B ≠ C

C ≠ D

D > E C > E

C ≠ A

C ≠ D+1

• The following table shows which elements of a domain are deleted at each
step, and which arc is responsible for removing the element:

Arc Relation Value(s) Removed
hD, Ei D > E D = 1
hE, Di D > E E = 4
hC, Ei C > E C = 1
hD, Ai A > D D = 4
hA, Di A > D A = 1&A = 2
hB, Ai B � A B = 1&B = 2
hE, Di D > E E = 3

At this stage arc consistency has stopped. Here is the arc-constraint graph:

{3,4} {3,4}

{2,3} {2,3,4}

{1,2}

A B

D
C

E

B >= A

A > D B ≠ C

C ≠ D

D > E C > E

C ≠ A

C ≠ D+1

Note that, if you had one arc between C and D labelled with C 6= D+ 1^C 6=
D, then C = 3 can be removed by considering the arc hC, Di. If you have two
arcs, C = 3 cannot be removed by arc consistency.

Constraint Ordering is Important

solve(A, B, C, D, E) :-
domain(C),
domain(D),
domain(A),
domain(B),
domain(E),
A > D,
D > E,
C =\= A,
C > E,
C =\= D,
B >= A,
B =\= C,
C =\= D + 1.

solve(A, B, C, D, E) :-
domain(C),
domain(D),
C =\= D,
C =\= D + 1,
domain(A),
A > D,
C =\= A,
domain(B),
B >= A,
B =\= C,
domain(E),
C > E,
D > E.

domain(1).
domain(2).
domain(3).
domain(4).

Much faster !

CLP(FD)

• SWI Prolog (and others) include constraint programming libraries

• Others: ECLiPSe, YAP, GNU-Prolog, Ciao, …

• Non-standard extensions, so beware!

• They change Prolog’s normal depth-first search for variable bindings to
incorporate constraint solving methods (including arc consistency, etc).

Example

:- use_module(library(clpfd)).

solve(A, B, C, D, E) :-
 [A, B, C, D, E] ins 1..4,
 A #> D,
 D #> E,
 C #\= A,
 C #> E,
 C #\= D,
 B #>= A,
 B #\= C,
 C #\= D + 1,

labeling([], [A, B, C, D, E]).

Declare domain

Assign values

‘#’ means operator is a constraint,
satisfied by constraint solving
rather than depth-first search

Solution to FD Problem
?- solve(A, B, C, D, E).

A = 3,

B = 3,

C = 4,

D = 2,

E = 1 ;

A = 4,
B = 4,
C = 2,
D = 3,
E = 1

Consistency Check
?- constraints(A, B, C, D, E).

A in 3..4,

C #\= A,

B #>= A,

D #=< A + -1,

C in 2..4,

C #\= D+1,

B #\= C,

C #\= D,

E #=< C + -1,

D in 2..3,

E #=< D + -1,

E in 1..2,

B in 3..4

Cryptarithmetic

D O N A L D
+ G E R A L D  

———————————  
R O B E R T

Cryptarithmetic
% Cryptarithmetic puzzle DONALD + GERALD = ROBERT in CLP(FD)

:- use_module(library(clpfd)).

solve([D,O,N,A,L,D],[G,E,R,A,L,D],[R,O,B,E,R,T]) :-
Vars = [D,O,N,A,L,G,E,R,B,T], % All variables in the puzzle
Vars ins 0..9, % They are all decimal digits
all_different(Vars), % They are all different
100000*D + 10000*O + 1000*N + 100*A + 10*L + D +
100000*G + 10000*E + 1000*R + 100*A + 10*L + D #=
100000*R + 10000*O + 1000*B + 100*E + 10*R + T,
labeling([], Vars).

?- solve(X, Y, Z).

X = [5, 2, 6, 4, 8, 5],
Y = [1, 9, 7, 4, 8, 5],
Z = [7, 2, 3, 9, 7, 0]

N-Queens
% The k-th element of Cols is the column number of the queen in row k.

:- use_module(library(clpfd)).

n_queens(N, Qs) :-
length(Qs, N),
Qs ins 1..N,
safe_queens(Qs).

safe_queens([]).
safe_queens([Q|Qs]) :-

safe_queens(Qs, Q, 1),
safe_queens(Qs).

COMP3411/9414/9814 18s1 Constraint Satisfaction Problems 6

n-Queens Puzzle as a CSP

Assume one queen in each column. Which row does each one go in?

Variables: Q1, Q2, Q3, Q4
Domains: Di = {1,2,3,4}

Constraints:
Qi != Qj (cannot be in same row)
|Qi−Qj| != |i− j| (or same diagonal)

UNSW c©Alan Blair, 2013-8

[1, 4, 1, 3]

safe_queens([], _, _).
safe_queens([Q|Qs], Q0, D0) :-

Q0 #\= Q,
abs(Q0 - Q) #\= D0,
D1 #= D0 + 1,
safe_queens(Qs, Q0, D1).

?- n_queens(8, Qs), labeling([ff], Qs).

CLP(R) - constraints over reals

Mortgage relation between the following arguments:

•P is the balance at T0

•T is the number of interest periods (e.g., years)

• I is the interest ratio where e.g., 0.1 means 10%

•B is the balance at the end of the period

•MP is the withdrawal amount for each interest

period.

:- use_module(library(clpr)).

mg(P, T, I, B, MP):-
 { T = 1,
 B + MP = P * (1 + I)
 }.
mg(P, T, I, B, MP):-
 { T > 1,
 P1 = P * (1 + I) - MP,
 T1 = T - 1
 },
 mg(P1, T1, I, B, MP).

?- mg(1000, 30, 5/100, B, 0).

B = 4321.9423751506665

Back to Standard Prolog:

Controlling Execution

Prolog – Finding Answers

Prolog uses depth first search to find answers

a(1).
a(2).
a(3).
b(1).
b(2).
b(3).

c(A, B) :- a(A), b(B).

Depth-first solution of query c(A,B)

A = 1, B = 1

Backtrack to find another solution

A = 1, B = 2

Backtrack to find another solution

A = 1, B = 3

Backtrack to find another solution

A = 2, B =1

The Cut (!)

• Sometimes we need a way of preventing Prolog from finding all
solutions

• The cut operator is a built-in predicate that prevents backtracking

• It violates the declarative reading of a Prolog programming

• Use it VERY sparingly!!!

Backtracking
lectures(maurice, Subject), studies(Student, Subject)?
Subject = 1021

Student = jack ;

Subject = 4411
Student = Jill ;

Subject = 4411
Student = Henry

lectures(maurice, Subject), studies(Student, Subject)

lectures(maurice, 1021)

studies(jack, 1021)

lectures(maurice, 4411)

studies(jill, 4411) studies(henry, 4411)

Cut prunes the search
lectures(maurice, Subject), !, studies(Student, Subject)?
Subject = 1021

Student = jack ;

Subject = 4411
Student = Jill ;

Subject = 4411
Student = Henry

lectures(maurice, Subject), !, studies(Student, Subject)

lectures(maurice, 1021)

studies(jack, 1021)

lectures(maurice, 4411)

studies(jill, 4411) studies(henry, 4411)

Example

Rules for determining the degree of pollution
Rule 1: if X < 3 then Y = normal
Rule 2: if 3 ≤ X and X < 6 then Y = alert1
Rule 3: if 6 ≤ X then Y = alert2

In Prolog: f(Concentration, Pollution_Alert)

 f(X, normal) :- X < 3. % Rule1
 f(X, alert1) :- 3 =< X, X < 6. % Rule2
 f(X, alert2) :- 6 =< X. % Rule3

Concentration X

Alternative Version

 f(X, normal) :- X < 3, !. % Rule1
 f(X, alert1) :- X < 6, !. % Rule2
 f(X, alert2). % Rule3

Which version is easier to read?

Operators

Operator Notation

• Operators are just compound (i.e. functional) terms

 2*a + b*c = +(*(2,a), *(b,c))

• +, * are infix operators in Prolog

• They are only interpreted as arithmetic expressions when the appear on the right-hand

side of the is operator. 

Operator Expressions are also Trees
• For example: (a + b) * (c - 5)

• Written as an expression with the functors:

TUDI ARITMETIČNI IZRAZI
SO DREVESA

• Na primer: (a + b) * (c - 5)

• Zapisano kot izraz s funktorji:

 *(+(a, b), -(c, 5))

 *
 + -
 a b c 5

Operators in Prolog
• You can define your own operators.

 :- op(Precedence, Type, Name).

• Precedence is a number between 0 and 1200.

For example,

• the precedence of “ = “ is 700,

• the precedence of “ + ” is 500,

• the precedence of “ * “ is 400.

Operators in Prolog
 :- op(Precedence, Type, Name).

• Type is an atom specifying the associativity of the operator.

• Infix operators:

• yfx - left associate (e.g. 1 + 2 + 3 = ((1 + 2) + 3)

• xfy - right associative (e.g. x ^ 2 ^ 2 = (x ^ (2 ^ 2))

• xfx - non-associative (e.g. wa = green; a = b = c is not valid)

• Prefix operators

• fy, fx (associative, non-associative)

• Postfix opertators

• yf, xf (associative, non-associative)

+

+ 3

1 2

^

x ^

1 2

Predefined Operators
• Operators with the same properties can be specified in one statement by giving a list of their

names instead of a single name as third argument of op.

• Operator definitions don't specify the meaning of an operator, only how it can be used
syntactically.

• Operator definition doesn't say how a query involving operator is evaluated to true.

:- op(1200, xfx, [:-, —>]).
:- op(1200, fx, [:-, ?-]).
:- op(1100, xfy, [;]).
:- op(1000, xfy, [‘,’]).
:- op(700, xfx, [=, is, =.., ==. \==, \==, =:=, =\=, <, >, =<, >=]).
:- op(500, yfx, [+, -]).
:- op(500, fx, [+, -]).
:- op(300, xfx, [mod]).
:- op(200, xfy, [^]).

User Defined Operators
Relations can be defined as operators, e.g.

has(peter, information).
supports(floor, table).

can be written with operators:

	 :- op(600, xfx, has).  
:- op(600, xfx, supports).

peter has information.
floor supports table.

Example - IF statement

% Operator declarations
:- op(500, fx, if).  
:- op(400, xfx, then).
:- op(300, xfx, else).

% Interpreter

if Condition then S1 else S2 :-
 Condition, !, S1. % Don’t allow backtracking if Condition is true
if Condition then S1 else S2 :-
 S2.

Built-in Predicates

• Testing the type of terms

• Construction and decomposition of terms: =. . , functor,
arg, name

• Comparison

• bagof, setof and findall

• Input, output

Testing the type of terms

var(X) true if X is unbound or instantiated to an unbound variable
nonvar(X) X is not a variable or instantiated to an unbound variable
atom(X) true if X is an atom
integer(X) true if X is an integer
float(X) true if X is a real number
number(X) true if X is a number
atomic(X) true if X is a number or an atom
compound(X) true if X is a compound term (a structure)
is_list(X) true if X is [] or a non-empty list

Example: Arithmetic Operations

...,

number(X), % Value of X number?

number(Y), % Value of Y number?

 Z is X + Y, % Then addition is possible

...

Construction and decomposition of terms:
=..	,	functor,	arg,	name	

 Term =.. [Functor, Arg1, Arg2, Arg3, ...] % “univ”

 Term =.. L

true if L is a list that conations the principal functor of Term, followed by its
arguments.

Example:

 ?- f(a, b) =.. L.
 L = [f, a, b]

 ?- T =.. [rectangle, 3,5].
 T = rectangle(3, 5)

Construction and decomposition of terms:
=..	,	functor,	arg,	name	

?- functor(a(), N, A).
N = a, A = 0.

?- functor(T, a, 0).
T = a.

?- arg(2, f(a, b), X).
X = b.

?- arg(N, f(a, b), V).
N = 1, V = a ;
N = 2, V = b.

Substitute

substitute(Subterm, Term, Subterm1, Term1)

Find all occurrences of Subterm in Term and substitute with Subterm1 to get Term1.

?- substitute(sin(x), 2*sin(x)*f(sin(x)), t, F).
F = 2*t*f(t)

% Case 1: Substitute whole term
substitute(Term, Term, Term1, Term1) :- !.

% Case 2: Nothing to substitute if Term atomic
substitute(_, Term, _, Term) :-

 atomic(Term), !. % Term is a constant

% Case 3: Do substitution on arguments
substitute(Sub, Term, Sub1, Term1) :-

Term =.. [F | Args], % Get arguments

substlist(Sub, Args, Sub1, Args1), % Perform substitution on them
Term1 =.. [F | Args1]. % Construct Term1

% substlist(SubTerm, Term_List, NewSubTerm, NewTerm_List)

Substitute

% substlist(SubTerm, Term_List, NewSubTerm, NewTerm_List)

% End of list, nothing to do

substlist(_, [], _, []).

% Otherwise, try substituting recursively

substlist(A, [X|List], B, [Y|List1]) :-

 substitute(A, X, B, Y),

substlist(A, List, B, List1).

Substitute

Example - Use of subs1tute	/	4

?- E0 = (a+b) * (a-b),
 substitute(a, E0, 6, E1),
 substitute(b, E1, 3, E2),
 Value is E2.

E1 = (6+b) * (6-b)
E2 = (6+3) * (6-3)
Value = 27

Comparison

 X = Y	 true if X and Y match

 X == Y	 if X and Y are identical

X \== Y	 if X and Y are not identical

X @< Y	 X is lexicographically smaller then Y, term X precedes term Y
by alphabetical or numerical ordering 
(e.g. paul @< peter)

findall, bagof, setof
% Find all values of Object that satisfy Condition and collect in List
findall(Object, Condition, List)  

% Same as findall except only stores unique values and fails if no solution found
bagof(Object, Condition, List

% Find all values of Object that satisfy Condition and collect in sorted List
setof(Object, Condition, List)

Example: robot world

 ?- findall(B, on(B,_), L). % L is a List of all blocks

 L = [a,b,c,d,e]  

Procedure findall, bagof, setof
Examples:

child(joze, ana). child(miha, ana).
child(lili, ana). child(lili, andrej).

?- findall(X, child(X, ana), S).
S = [joze, miha, lili]

?- setof(X, child(X, ana), S).
S = [joze, lili, miha]

?- findall(X, child(X, Y), S).
S = [joze, miha, lili, lili]

?- bagof(X, child(X, Y), S).
S = [joze, miha, lili]
Y = ana;

Input / Output
consult(File) % Load File into Prolog’s database

see(File) % File becomes the current input stream

see(user) % user input (i.e. from terminal)

seen % close the current input stream

seeing(X) % binds X to the current input file

tell(File) % File becomes the current output stream

tell(user) % user output (i.e. output to terminal)

told % close the current output stream

telling(X) % binds X to the current output file

Input / Output

write(Term) % write Term to current output stream

writeln(Term) % write Term and append newline

nl % write newline to current output stream

read(Term) % read Term from current input stream

SWI Prolog Manual

There is a lot more to learn in the user manual:

https://www.swi-prolog.org/pldoc/doc_for?object=manual

Breadth-First Search

Each	path	on	the	fron-er	
has	either	the	same	
number	of	arcs	or	one	
more	arc	than	the	next	
element	of	the	fron-er	
that	will	be	selected.

solve(Start, Solution) :- breadthfirst([[Start]], Solution).

breadthfirst([[Node|Path]|_], [Node|Path]) :- goal(Node).

breadthfirst([Path|Paths], Solution) :-

 extend(Path, NewPaths),

 append(Paths, NewPaths, Paths1),

 breadthfirst(Paths1, Solution).

extend([Node|Path], NewPaths) :-

 findall([Neighbour, Node|Path], new_neighbour([Neighbour, Node|Path]), NewPaths).

new_neighbour([Neighbour, Node|Path]) :-

 edge(Node, Neighbour),

 \+ member(Neighbour, [Node|Path]).

Breadth-First Search

