
Planning Under Uncertainty 
Reinforcement Learning

COMP3411/9814: Artificial Intelligence

Lecture Overview

• Reinforcement Learning vs Supervised Learning

• Boxes

• Exploration vs Exploitation

• Q-Learning

Learning Agent
COMP3411/9414/9814 18s1 Learning and Decision Trees 1

Learning Agents

Agent

Action

Reinforcement Learning

Perception

Inference Learning

Statistical Learning

World Model

Environment

Planning

Bayesian Learning

UNSW c©AIMA, 2003, Blair, 2013-18

Types of Learning
• Supervised Learning

• Agent is given examples of input/output pairs

• Learns a function from inputs to outputs that agrees with the training examples and
generalises to new examples

• Unsupervised Learning

• Agent is only given inputs

• Tries to find structure in these inputs

• Reinforcement Learning

• Training examples presented one at a time

• Must guess best output based on a reward, tries to maximise (expected) rewards over time

Environment Types

Environments can be:

• passive and deterministic

• passive and stochastic

• active and deterministic (chess)

• active and stochastic (backgammon, robotics)

Reinforcement Learning and Planning

• We start with reinforcement learning because it is also related to
planning.

• RL tries to find the best way to act in uncertain and non-deterministic
environments.

Stumpy - A Simple Learning Robot

Reinforcement Learning

• “Stumpy” receives a reward after each action

• Did it move forward or not?

• After each move, updates its policy

• Continues trying to maximise its reward

Pole Balancing

• Pole balancing can be learned the same way
except that reward is only received at the end

• after falling or hitting the end of the track

x

θ

Pole Balancing

Boxes
• State variables:

• State space is discretised

• Each “box” represents a subset of state space

• When system lands in a box, execute action
specified

• left push

• right push

< x, ·x, θ, ·θ >

x

θ

MENACE  
(Machine Educable Noughts and Crosses Engine – D. Michie, 1961)

Simulation
xt+1 = xt + τ ·xt
·xt+1 = ·xt + τ··xt

θt+1 = θt + τ ·θt
·θt+1 = ·θt + τ··θt

··xt =
Ft + mp l [·θ 2

t sin θt − ··θt cos θt]
mc + mp

··θt =
g sin θt + cos θt [−Ft − mp l ·θ 2

t sin θt

mc + mp]
l [4

3 −
mp cos2 θt

mc + mp]

mc = 1.0 kg mass of cart

mp = 1.0 kg 	 mass of pole

l = 0.5 m distance of centre of mass
of pole from the pivot

g = 9.8 ms-2 acceleration due to gravity

Ft = ± 10 N force applied to cart

t = 0.02 s time interval of simulation

The BOXES Algorithm

• Each box contains statistics on performance of controller, which
are updated after each failure

• How many times each action has been performed (usage)

• The sum of lengths of time the system has survived after taking a particular
action (LifeTime)

• Each sum is weighted by a number less than one which places a
discount on earlier experience.

Exploration / Exploitation Tradeoff

• Most of the time choose what we think is the “best” action.

• But to learn, must occasionally choose something different from
preferred action

Update Rule
if an action has not been tested

choose that action

else if

choose left

else

choose right

LeftLife
LeftUsagek

>
RightLife

RightUsagek
k is a bias to force exploration

e.g. k = 1.4

Performance

• BOXES is fast

• Only 75 trials, on average, to reach 10,000 time steps

• But only works for episodic problems

• i.e. has a specific termination

• Doesn’t work for continuous problems like Stumpy

State Transition Graph

States and Actions
• Each node is a state

• Actions cause transitions from one state to another

• A policy is the set of transition rules

• i.e. which action to apply in a given state

• Agent receives a reward after each action

• Actions may be non-deterministic

• Same action may not always produce same state

Reinforcement Learning Framework
• An agent interacts with its environment.

• There is a set of states, , and a set of actions, .

• At each time step , agent is in state .

• It must choose an action , which changes state to

• and receives reward .

• The world is non-deterministic, i.e. an action may not always take the system to the

same state

• , and therefore , can be multi-valued, with a random element

• Aim is to find an optimal policy that maximises the
cumulative reward.

S A
t st

at

st+1 = δ(st, at) r(st, at)

δ r

π : S → A

Markov Decision Process (MDP)

• Assume that current state has all the information needed to
decide which action to take

• Actions are assumed to have a fixed duration

Learning an MDP
• The agent initially only knows the set of possible states and the set of

possible actions.

• The dynamics, , and the reward function, , are not given to
the agent.

• the probability of the agent transitioning into state given that the
agent is in state and does action

• After each action, the agent observes the state it is in and receives a reward.

• Assume that current state has all the information needed to decide which
action to take

P(s′￼|a, s) R(s, a)

P(s′￼|a, s) s′￼

s a

Grid World Example

Expected Reward
• Try to maximise expected future reward:

• is the value of state under policy

• is a discount factor [0..1]

Vπ(st) st π

γ

V π (st) = rt + γ rt+1 + γ
2rt+2 +…

= γ irt+i
i=0

∞

∑

Value Function

• is the expected value of following policy in state

• be the maximum discounted reward obtainable from s.

• i.e. the value of following the optimal policy

• We make the simplification that actions are deterministic, but we
don’t know which action to take.

• Other RL algorithms relax this assumption

Vπ(s) π s

V*(s)

Value Function
• The red arrows show, , is the optimal policy, with

• values shown in red

π* γ = 0.9

V*(s)

Value function for an optimal policy π*
• Suppose π* is shown by red arrows, γ = 0.9

G

0
0

0

0

0

0

0

0

100

0

0

100

0

V*(s) values are shown in red

100

0

90

10090

81

10

 ValueQ
• How to choose an action in a state?

	

• The value for an action, , in a state, , is the immediate
reward for the action plus the discounted value of following the
optimal policy after that action

• V* is value obtained by following the optimal policy

• is the succeeding state, assuming the optimal policy

Q(s, a) = r(s, a) + γV*(s′￼)

Q a s

s′￼ = δ(s, a)

 valuesQ
Q values

G

0
0

0

0

0

0

0
0

100

0

0

100

0

r(s, a) (immediate reward) values

G

100

0

90

10090

81
81

72
81

81

72

90

81

Q(s, a) values

G

100

0

90

10090

81

V*(s) values

15

Q values

G

0
0

0

0

0

0

0
0

100

0

0

100

0

r(s, a) (immediate reward) values

G

100

0

90

10090

81
81

72
81

81

72

90

81

Q(s, a) values

G

100

0

90

10090

81

V*(s) values

15

Q values

G

0
0

0

0

0

0

0
0

100

0

0

100

0

r(s, a) (immediate reward) values

G

100

0

90

10090

81
81

72
81

81

72

90

81

Q(s, a) values

G

100

0

90

10090

81

V*(s) values

15

γ = 0.9

 LearningQ
initialise Q(s,a) = 0 for all s and a
observe current state s
repeat

select an action a and execute it
observe immediate reward r and next state ′s
Q(s,a)← r + max

′a
Q(′s , ′a)

s← ′s

Exploration vs Exploitation
• How do you choose an action?

• Random

• Pick the current “best” action

• Combination:

• most of the time pick the best action

• occasionally throw in random action

• Boltzmann exploration:

π(st, a) ≃ e
−Qt(st, a)

τ

Decrease over time

• High : exploration

• Low : exploitation

τ
τ
τ

f(x) = e−x

Stumpy after 30 minutes

Reinforcement Learning Variants

• There are many variations on reinforcement learning to improve
search.

• RL is one of the components of alphaZero, which is currently the
best Go and Chess player

• Used to learn helicopter aerobatics

Background

• Reinforcement learning is based in earlier work in optimisation:
dynamic programming

• Text book: Sutton & Barto

