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| ecture Overview

Reinforcement Learning vs Supervised Learning
Boxes
Exploration vs Exploitation

Q-Learning



Learning Agent

Agent

World Model Planning




Types of Learning

e Supervised Learning
« Agentis given examples of input/output pairs
* Learns a function from inputs to outputs that agrees with the training examples and
generalises to new examples
e Unsupervised Learning
* Agentis only given inputs

» Tries to find structure in these inputs

» Reinforcement Learning
* Training examples presented one at a time

» Must guess best output based on a reward, tries to maximise (expected) rewards over time



Environment Types

Environments can be:

e passive and deterministic

e passive and stochastic

e active and deterministic (chess)

e active and stochastic (backgammon, robotics)



Reinforcement Learning and Planning

« We start with reinforcement learning because it is also related to
planning.

* RL tries to find the best way to act in uncertain and non-deterministic
environments.



Stumpy - A Simple Learning Robot




Reinforcement Learning

e “Stumpy” receives a reward after each action

* Did it move forward or not?
« After each move, updates its policy

e Continues trying to maximise its reward



Pole Balancing

o

X

e Pole balancing can be learned the same way
except that reward is only received at the end

 after falling or hitting the end of the track



Pole Balancing




State variables: < x, x, 6,0 >

State space is discretised

Boxes

Each “box” represents a subset of state space

When system lands in a box, execute action

specified

* left push

;
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* right push
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MENACE

(Machine Educable Noughts and Crosses Engine — D. Michie, 1961)
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Simulation

Xy = X, + TX, me=10kg mass of cart
Xep1 = X T TX

0., =0,+10, mpy=1.0kg mass of pole

01 = éz + Tét

[=05m distance of centre of mass
Fi+m,l [9} sind, — 8, cos Qt] of pole from the pivot
i =
! m, + m, . :
, g=98 ms? acceleration due to gravity
] —F,—-m,l 92 sin 6,
gsinf, + cos 0, ]
.. me + 1, .
0, = F:=x 10N force applied to cart

t=0.02s time interval of simulation



The BOXES Algorithm

« Each box contains statistics on performance of controller, which
are updated after each failure

 How many times each action has been performed (usage)

* The sum of lengths of time the system has survived after taking a particular
action (LifeTime)

« Each sum is weighted by a number less than one which places a
discount on earlier experience.



Exploration / Exploitation Tradeoff

 Most of the time choose what we think is the “best” action.

e But to learn, must occasionally choose something different from
preferred action



if an action has not been tested

Update Rule

choose that action

. LeftLife RightLife
else if YLV RightLij
LeftUsage*  RightUsage*
choose left
else

choose right

k is a bias to force exploration
eg. k=14




Performance

e BOXES is fast

* Only 75 trials, on average, to reach 10,000 time steps

« But only works for episodic problems

* i.e. has a specific termination

* Doesn’t work for continuous problems like Stumpy



State Transition Graph




States and Actions

Each node is a state
Actions cause transitions from one state to another

A policy is the set of transition rules

* i.e. which action to apply in a given state
Agent receives a reward after each action

Actions may be non-deterministic

e Same action may not always produce same state



Reinforcement Learning Framework

« An agent interacts with its environment.
- There is a set of states, S, and a set of actions, A.

- At each time step 7, agent is in state ..
- It must choose an action a,, which changes state to

. 5,1 = 0(s,, a,) and receives reward r(s,, a,).

« The world is non-deterministic, i.e. an action may not always take the system to the
same state

« 0, and therefore r, can be multi-valued, with a random element

- Aim is to find an optimal policy = : § — A that maximises the
cumulative reward.



Markov Decision Process (MDP)

 Assume that current state has all the information needed to
decide which action to take

o Actions are assumed to have a fixed duration



Learning an MDP

The agent initially only knows the set of possible states and the set of
possible actions.

The dynamics, P(s’| a, s), and the reward function, R(s, a), are not given to
the agent.

P(s'| a, ) the probability of the agent transitioning into state s’ given that the
agent is in state s and does action a

After each action, the agent observes the state it is in and receives a reward.

Assume that current state has all the information needed to decide which
action to take



Grid World Example

Coal




Expected Rewarad

* Try to maximise expected future reward:

2
Vi) =+ 7h, Y T+

+1

= 2 yirm

i=0

« Vs, is the value of state s, under policy &

« ¥ is a discount factor [0O..1]



Value Function

e V*(s) is the expected value of following policy 7z in state s

e V*(5) be the maximum discounted reward obtainable from s.
e |.e. the value of following the optimal policy

e \We make the simplification that actions are deterministic, but we
don’t know which action to take.

e Other RL algorithms relax this assumption



Value Function

e The red arrows show, 7%, is the optimal policy, with y = 0.9

e V*(s) values shown in red
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0 Value

How to choose an action in a state?

O(s,a) = r(s,a) + yV*(s')
The Q value for an action, a, in a state, s, is the immediate
reward for the action plus the discounted value of following the
optimal policy after that action

J* is value obtained by following the optimal policy

s’ = 0(s, a) is the succeeding state, assuming the optimal policy
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() Learning

initialise O(s,a) =0 for all s and a
observe current state s
repeat
select an action a and execute it
observe immediate reward » and next state s’

O(s,a) < r+maxQ(s’,a’)

s 8



Exploration vs Exploitation

 How do you choose an action? \

-
° Random fw = e \\

* Pick the current “best” action

 Combination:

* most of the time pick the best action Decrease T over time
_ _ _ « High 7: exploration
e occasionally throw in random action « Low 7: exploitation

e Boltzmann exploration:

~0((s1.a)
n(s,a) ~e G



Stumpy after 30 minutes




Reinforcement Learning Variants

e There are many variations on reinforcement learning to improve
search.

* RL is one of the components of alphaZero, which is currently the
best Go and Chess player

e Used to learn helicopter aerobatics



Background

* Reinforcement learning is based in earlier work in optimisation:
dynamic programming

e Text book: Sutton & Barto




