
Uninformed Search
COMP3411/9814: Artificial Intelligence 



When is Search Needed?
• Motion Planning


• Navigation


• Speech and Natural Language


• Task Planning


• Machine Learning


• Game Playing



Search Methods

• Uninformed search


• use no problem-specific information


• Uninformed (or “blind”) search strategies use only the information available in the 
problem definition (can only distinguish a goal from a non-goal state)


• Informed search


• use heuristics to improve efficiency


• Informed (or “heuristic”) search strategies use task-specific knowledge. 



Overview 
• Basic search algorithms


• Breadth First Search 


• Depth First Search 


• Uniform Cost Search 


• Depth Limited Search 


• Iterative Deepening Search


• Bidirectional Search 



State Space Search Problems 
• State space — set of all states reachable from initial state(s) by any action sequence 


• Initial state(s) — element(s) of the state space 


• Transitions


• Operators — set of possible actions at agent’s disposal; describe state reached after 
performing action in current state, or


• Successor function — s(x)= set of states reachable from state x by performing a single 
action 


• Goal state(s) — element(s) of the state space 


• Path cost — cost of a sequence of transitions used to evaluate solutions 
(applies to optimisation problems) 



Delivery Robot 

• The robot wants to get from outside room 
103 to the inside of room 123. 


• The only way a robot can get through a 
doorway is to push the door open in the 
direction shown.


• The task is to find a path from o103 to to r123  
o103 o109

o119o123

ts

storage

a3

a1

a2

b1 b2

b3 b4

c1

c2 c3

d1 d2

d3

o101 o105 o107 o111

o117

o115

o113

o121o125o127o129o131

mail



State-Space Graph for Delivery Robot 

• Modelled as a state-space 
search problem


• States are locations.



Problem Solving by Graph Searching 

Search strategy differ in the 
way they expand the frontier



Search Tree 

• Search tree: superimposed over the 
state space. 


• Root: search node corresponding to the 
initial state. 


• Leaf nodes: correspond to states that 
have no successors in the tree because 
they were not expanded or generated 
no new nodes. 



Breadth-First Search 
a

b

d e

i jh

c

f

k

g



Breadth-first Search Frontier 



Breadth-First Search 

A"er each itera+on, each 
path on the fron+er has 
either the same number of 
arcs



Breadth-first Search 

• Breadth-first search treats the frontier as a queue


• It selects the first element in the queue to explore next


• If the list of paths on the frontier is [p1,p2,...,pr]: 


• p1 is selected. Its neighbours are added to the end of the queue, after pr . 


• p2 is selected next. 



Breadth-First Search 
• All nodes are expanded at a same depth in the tree before any nodes at the 

next level are expanded 


• Can be implemented by using a queue to store frontier nodes	 


• put newly generated successors at end of queue 


• Stop when node with goal state is reached


• Include check that state has not already been explored 


• Needs a new data structure for set of explored states 


• Finds the shallowest goal first 



Complexity of Breadth-first Search 

• Does breadth-first search guarantee finding the shortest path? 


• What happens on infinite graphs or on graphs with cycles if there is a solution? 


• What is the time complexity as a function of the length of the path selected? 


• What is the space complexity as a function of the length of the path selected? 


• How does the goal affect the search? 



Properties of breadth-first search

Complete?	 Yes (if breadth, , is finite, the shallowest goal is at a 
fixed depth, , and will be found before any deeper 
nodes are generated) 


Time?	 


Space?	  (keeps every node in memory; generate all 
nodes up to level  ) 


Optimal?	 Yes,  but only if  all actions have the same cost 


Space is the big problem for BFS. It grows exponentially with depth

b
d

1 + b2 + b3 + . . . + bd =
bd+1 − 1

b − 1
= O(bd)

O(bd)
d

1
2

4

8

16



Depth-first Search  - DFS



Depth First Search 

• Expand one node at the deepest level reached so far 


•  Implementation: 


• Implement the frontier as a stack, i.e. insert newly generated states at the front of the 
open list (frontier)


• Can be implemented by recursive function calls, where call stack maintains open list


• In depth-first search, like breadth-first, the order in which the paths are 
expanded does not depend on the goal.



Depth First Search 

• At any point depth-first search stores single 
path from root to leaf, together with any 
remaining unexpanded siblings of nodes 
along path 


•  Stop when node with goal state is 
expanded 


• Include check that state has not already 
been explored along a path – cycle 
checking 



Depth-first Search Example



Which goal (shaded) will depth-first 
search find first? 



Properties of depth-first search
Complete? No! fails in infinite-depth spaces, spaces with 

loops

	 Modify to avoid repeated states along path ! 

complete in finite spaces


Time?	 ,  m = maximum depth of search tree terrible 
if m is much larger than d, but if solutions are 
dense, may be much faster than breadth-
first


Space?	 , i.e., linear space

Optimal?	 No, can find suboptimal solutions first.

O(bm)

O(bm)



Depth-First Search 
Analysis 

• In cases where problem has many solutions, depth-first search may outperform 
breadth-first search because there is a good chance it will find a solution after 
exploring only a small part of the space 


• However, depth-first search may get stuck following a deep or infinite path even 
when a solution exists at a relatively shallow level 


• Therefore, depth-first search is not complete and not optimal 


• Avoid depth-first search for problems with deep or infinite path 



Lowest-cost-first Search 
Uniform-Cost Search 

• Sometimes transitions have a cost


• Cost of a path is the sum of the costs of its arcs:





• An optimal solution has minimum cost


• Delivery robot example: 

• cost of arc may be resources (e.g., time, energy) required to execute action represented by 
the arc


• aim is to reach goal using least resources

cost(⟨n0, ⋯, nk⟩) =
k

∑
i=1

cost(⟨ni−1, ni⟩)



Lowest-cost-first Search 
Uniform-Cost Search 

• The simplest search method that is guaranteed to find a minimum cost path 
is lowest-cost-first search or uniform-cost search 


• similar to breadth-first search, but instead of expanding path with least number of 
arcs, select path with lowest cost 


• implemented by treating the frontier as a priority queue ordered by the cost function


cost(⟨n0, ⋯, nk⟩) =
k

∑
i=1

cost(⟨ni−1, ni⟩)



Lowest-Cost Search for Delivery Robot 

• Edges are labelled with cost


• e.g. distance to travel


• Sort queue by increasing cost of 
path to the node



Uniform-Cost Search 

• Expand root first, then expand least-cost unexpanded node 


• Implementation with priority queue


• insert nodes in order of increasing path cost - lowest path cost is . 


• Reduces to breadth-first search when all actions have same cost 


• Finds the cheapest goal provided path cost is monotonically increasing along 
each path (i.e. no negative-cost steps) 

g(n)



Properties of Uniform-Cost Search 

Complete?	 Yes, if b is finite and if transition   with  


Time?	 Worst case, 	 where	  = cost of the optimal solution

	 	 every transition costs at least 


	 	  cost per step is 


Space?	 ,  if all step costs are equal 


Optimal?	 Yes – nodes expanded in increasing order of 

cost ≥ ϵ ϵ > 0

O(b[C*/ϵ]) C*
ϵ

∴
C*
ϵ

O(b[C*/ϵ]) b[C*/ϵ] = bd

g(n)



Summary of Search Strategies 

Complete:	 guaranteed to find a solution if there is one (for graphs with finite 
number of neighbours, even on infinite graphs) 


Halts:	 on finite graph (perhaps with cycles).

Space:	 as a function of the length of current path 



Depth Bounded Search 
Expands nodes like Depth First Search but imposes a cutoff on the maximum 
depth of path.


 Complete?		 Yes (no infinite loops anymore)


 Time?	 	 	  where k is the depth limit


 Space?	 	 	 , i.e., linear space similar to DFS


 Optimal?	 	 	 No, can find suboptimal solutions first.

O(bk)

O(bk)

Problem: How to pick a good limit ? 



Iterative Deepening Search 

• Depth-bounded search: hard to decide on a depth bound


• Iterative deepening: Try all possible depth bounds in turn 


• Combines benefits of depth-first and breadth-first search 



Iterative Deepening Search 

• Tries to combine the benefits of depth-first (low memory) and breadth-first 
(optimal and complete)


• Does a series of depth-limited depth-first searches to depth 1, 2, 3, etc. 


• Early states will be expanded multiple times, but that might not matter too 
much because most of the nodes are near the leaves. 



Iterative Deepening Search 



Iterative Deepening Search 



Iterative Deepening Search 



Properties of Iterative Deepening 
Search 

• Complete? Yes.

• Time:  nodes at the bottom level are expanded once, nodes at the 

next level up twice, and so on:


• depth-bounded: 


• Iterative deepening:





• Example  b=10,   d=5: 

• depth-bounded: 1 + 10 + 100 + 1,000 + 10,000 + 100,000  =  111,111


• iterative-deepening: 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456 


• only about 11% more nodes (for b = 10).		 	 	 	 	 	 	 	 	       

1 + b2 + b3 + . . . + bd =
bd+1 − 1

b − 1
= O(bd)

(d + 1)b0 + db1 + (d − 1)b2 + ⋯ + 2 ⋅ bd−1 + 1 ⋅ bd = O(bd)



Properties of 
Iterative Deepening Search 

• Complete?	 Yes.


• Time:	 	 	 


• Space?	 	 	 


• Optimal?		 	 Yes, if step costs are identical. 


• In general, iterative deepening is the preferred search strategy for a large search 
space where depth of solution is not known

O(bd)

O(bd)



Bidirectional Search 

COMP9414/9814/3411 18s1 Search 41

Bidirectional Search

GoalStart

UNSW c©Alan Blair, 2013-18



Bidirectional Search 

• Search both forward from the initial state and backward from the goal


• stop when the two searches meet in the middle. 


• Need efficient way to check if a new node appears in the other half of the 
search.


• Complexity analysis assumes this can be done in constant time, using a hash table. 


• Assume branching factor = b in both directions and that there is a solution at 
depth = d:


• Then bidirectional search finds a solution in  time steps. O(2bd/2) = O(bd/2)



Bidirectional Search 
Analysis 

• If solution exists at depth  then bidirectional search requires time                            


 


• (assuming constant time checking of intersection) 


• To check for intersection must have all states from one of the searches in 
memory,  therefore space complexity is 

d

O(2b
d
2) = O(bd

2)

O(bd
2)



Summary 

• Problem formulation usually requires abstracting away real-world details to 
define a state space that can feasibly be explored. 


• Variety of Uninformed search strategies 


• Iterative Deepening Search uses only linear space and not much more time than 
other Uninformed algorithms. 



Complexity Results for Uninformed 
Search 

COMP9414/9814/3411 18s1 Search 45

Complexity Results for Uninformed Search

Breadth- Uniform- Depth- Depth- Iterative
Criterion First Cost First Limited Deepening

Time O(bd) O(b!C∗/ε#) O(bm) O(bk) O(bd)

Space O(bd) O(b!C∗/ε#) O(bm) O(bk) O(bd)

Complete? Yes1 Yes2 No No Yes1

Optimal ? Yes3 Yes No No Yes3

b = branching factor, d = depth of the shallowest solution,
m = maximum depth of the search tree, k = depth limit.
1 = complete if b is finite.
2 = complete if b is finite and step costs ≥ ε with ε> 0.
3 = optimal if actions all have the same cost.

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 45

Complexity Results for Uninformed Search

Breadth- Uniform- Depth- Depth- Iterative
Criterion First Cost First Limited Deepening

Time O(bd) O(b!C∗/ε#) O(bm) O(bk) O(bd)

Space O(bd) O(b!C∗/ε#) O(bm) O(bk) O(bd)

Complete? Yes1 Yes2 No No Yes1

Optimal ? Yes3 Yes No No Yes3

b = branching factor, d = depth of the shallowest solution,
m = maximum depth of the search tree, k = depth limit.
1 = complete if b is finite.
2 = complete if b is finite and step costs ≥ ε with ε> 0.
3 = optimal if actions all have the same cost.

UNSW c©Alan Blair, 2013-18


