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Lecture Overview 

• Neurons – Biological and Artificial 


• Perceptron Learning


• Linear Separability


• Multi-Layer Networks 


• Back propagation


• Applications of neural networks  
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Sub-Symbolic Processing
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Brain Regions 
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Brain Regions 
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Structure of a Typical Neuron 
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Brains
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Biological Neurons 

• The brain is made up of neurons (nerve cells) which have

• a cell body (soma) 

• dendrites (inputs) 

• an axon (outputs) 

• synapses (connections between cells)


• Synapses can be excitatory or inhibitory and may change over time. 


• When the inputs reach some threshold an action potential (electrical 
pulse) is sent along the axon to the outputs. 
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Variety of Neuron Types 
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The Big Picture 

• Human brain has 100 billion neurons with an 
average of 10,000 synapses each 


• Latency is about 3-6 milliseconds 


• At most a few hundred “steps” in any mental 
computation, but massively parallel 
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Artificial Neural Networks 

• Information processing architecture loosely modelling the 
brain


• Consists of many interconnected processing units (neurons)

• Work in parallel to accomplish a global task


• Generally used to model relationships between inputs and 
outputs or to find patterns in data 
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Artificial Neural Networks (ANN)

• Weights can be positive or negative and may change over time (learning). 

• The input function is the weighted sum of the activation levels of inputs. 

• The activation level is a non-linear transfer function g	of this input: 


Some nodes are inputs (sensing), some are outputs (action)

activation𝑖 = 𝑔(𝑠𝑖) = 𝑔 ∑
𝑗

𝑤𝑖𝑗𝑥𝑗
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❑ ANNs	nodes	have	

➢ inputs	edges	with	some	weights	

➢ outputs	edges	with	weights

➢ activation	level	(function	of	inputs)



First artificial neurons: McCulloch-Pitts (1943)

• McCulloch-Pitts model: 

• Inputs either 0 or 1. 

• Output 0 or 1. 

• Input can be either excitatory or inhibitory.


• Summing inputs 

• If input is 1, and is excitatory, add 1 to sum. 

• If input is 1, and is inhibitory, subtract 1 from sum. 


• Threshold,

• if sum < threshold, T, output 0. 

• Otherwise, output 1.
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…


if sum < T  then output is 0

else output is 1.

𝑠𝑢𝑚 = 𝑥1 ∙ 𝑤1 + 𝑥2 ∙ 𝑤2 + 𝑥3 ∙ 𝑤3+



McCulloch & Pitts Model of a Single Neuron 
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Activation Functions 

Function  takes the weighted sum of inputs and 
produces output for node, given some threshold. 

𝑔(𝑠)
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𝑔(𝑠) = {1 if 𝑠  ≥ 0
0 if 𝑠 < 0



The sigmoid or logistic activation function 
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f(x) =
1

1 + e−x

Derivative  is the slope of the functionf′￼(x) = f(x)(1 − f(x))



Simple Perceptron 

The perceptron is a single layer feed-forward neural network. 
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Simple Perceptron 

Simplest output function 


Used to classify patterns said to be linearly separable 
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Implementing logical functions 

McCulloch and Pitts - every Boolean function can be implemented: 
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Im plement ing logical f unct ions

AND

W0 = 1.5

W1 = 1

W2 = 1

OR

W2 = 1

W1 = 1

W0 =  0.5

NOT

W1 = –1

W0 = – 0.5

McCulloch and Pitts: every Boolean function can be implemented

Chapter 20, Sect ion 5 6

- -



Linear Separability 

Examples: 


Can we train a perceptron net to learn a new function?

Yes, as long as it is linearly separable
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Linear Separability 
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The bias is proportional to the offset of the 
plane from the origin 


The weights determine the slope of the line 


The weight vector is perpendicular to the plane


x2 = −
w1

w2
x1 −

θ
w2



Linear Separability 
What kind of functions can a perceptron compute?
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Linearly Separable 

  

Linearly Separable

 Not Linearly Separable   



Linearly Separable 

• Linearly separable if there is a hyperplane where classification is true on one 
side of hyperplane and false on other side


• For the sigmoid function, when the hyperplane is: 





separates the predictions > 0.5 and < 0.5. 

𝑥1 ∙ 𝑤1 + … + 𝑥𝑛 ∙ 𝑤𝑛 = 0
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Variants in Linear Separators 

• Which linear separator to use can result in various algorithms: 


• Perceptron 


• Logistic Regression


• Support Vector Machines (SVMs) ... 
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Kernel Trick

• Project points onto an higher dimensional space

• Becomes linearly separable
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Perceptron Learning Algorithm 

• Want to train perceptron to classify inputs correctly 


• Compare output of network with correct output and 
adjust the weights and bias to minimise the error


• So learning is parameter optimisation


• Can only handle linearly separable sets
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Perceptron Learning Algorithm 
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• Training set: set of input vectors to train perceptron. 


• During training, wi	and θ (bias)	are modified


‣ for convenience, let w0 = θ and x0 = 1 


• η,	is	the	learning	rate,	a	small	positive	number


‣ small steps lessen possibility of destroying correct classifications 


• Initialise wi	to some values 



Perceptron Learning Rule 

• Repeat for each training example

• Adjust the weight, , for each input, . 


η	>	0	is	the	learning	rate
d	is	the	desired	output
y	is	the	actual	output

• If output correct, no change


• If d=1 but y=0,  is increased when  is positive and decreased when  is 
negative (want to increase )


• If d=0 but y=1,  is decreased when  is positive and increased when  is 
negative (want to decrease )

𝑤𝑖 𝑥𝑖

wi ← wi + η(d − y) ⋅ xi

𝑤𝑖 𝑥𝑖 𝑥𝑖
𝐰 ∙ 𝐱

𝑤𝑖 𝑥𝑖 𝑥𝑖
𝐰 ∙ 𝐱
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Perceptron Convergence Theorem 

For any data set that is linearly separable, perceptron learning rule 
is guaranteed to find a solution in a finite number of iterations.
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Historical Context 

• In 1969, Minsky and Papert published book highlighting limitations of perceptrons 

• Funding agencies redirected funding away from neural network research,

• preferring instead logic-based methods such as expert systems. 


• Known since 1960’s that any logical function could be implemented in a 2-layer neural 
network with step function activations.


• Problem was how to learn weights of multi-layer neural network from training examples


• Solution found in 1976 by Paul Werbos

• not widely known until rediscovered in 1986 by Rumelhart, Hinton and Williams. 
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Limitations of Perceptrons 
Problem: many useful functions are not linearly separable (e.g. XOR)


Possible solution:

x1 XOR x2 can be written as: (x1 AND x2) NOR (x1 NOR x2)

Recall that AND, OR and NOR can be implemented by perceptrons.
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Multi-Layer Neural Networks

• Given an explicit logical function, we can design a multi-layer neural network by hand to compute that function. 


• But, if we are just given a set of training data, can we train a multi-layer network to fit these data? 
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Activation functions 
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(a) is a step function or threshold function


(b)  is a sigmoid function 


Changing the bias weight  moves the threshold

1
1 + e−x
w0,i



Feed-Forward Example 

• Feed-forward network = a parameterised family of nonlinear functions: 


• Adjusting weights changes the function

𝑎5 = 𝑔(𝑊3,5 ∙ 𝑎3 + 𝑊4,5 ∙ 𝑎4)
= 𝑔(𝑊3,5 ∙ 𝑔(𝑊1,3 ∙ 𝑎1 + 𝑊2,3 ∙ 𝑎2) + 𝑊4,5 ∙ 𝑔(𝑊1,4 ∙ 𝑎1 + 𝑊2,4 ∙ 𝑎2))

34

wi,j ≡ 	weight	between	node	i	and	node	j



ANN Training as Cost Minimisation 

• Define error function Mean Squared Error, E


y	=	actual	output
d	=	desired	output

• Think of E	as height of error landscape of 
weight space. 


• Aim to find a set of weights for which E	is 
very low.

E =
1
2 ∑ (d − y)2
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1. Forward pass: apply inputs to “lowest layer” and feed 
activations forward to get output


2. Calculate error: difference between desired output and actual 
output


3. Backward pass: Propagate errors back through network to 
adjust weights

Backpropagation
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Forward	Pass

Backprop



Gradient Descent 




If transfer functions are smooth, can use multivariate calculus to 
adjust weights by taking steepest downhill direction. 





Parameter  is the learning rate

• How the cost function affects the particular weight

• Find the weight 

E =
1
2 ∑ (d − y)2

w ← w + η
∂E
∂w

η
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Derivative of a Function

The derivative of a function is the slope 
of the tangent at a point


Written 

𝑦 = 𝑓(𝑥) = 𝑚𝑥 + 𝑏

𝑚 =
𝑐h𝑎𝑛𝑔𝑒 𝑖𝑛 𝑦
𝑐h𝑎𝑛𝑔𝑒 𝑖𝑛 𝑥

=
∆ 𝑦
∆ 𝑥

𝑑𝑦
𝑑𝑥
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Partial Derivative

Derivative of a function of several variables with respect to one of 
this variables


If 


Derivative with respect to x is written: 

𝑧 = 𝑓(𝑥,  𝑦, …)
𝜕𝑧
𝜕𝑥
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Function must be continuous to be differentiable
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Replace the (discontinuous) step function with a differentiable function, such as the sigmoid:





or hyperbolic tangent

 

	 (-1 to 1)

𝑔(𝑠) =
1

1 + 𝑒−𝑠

𝑔(𝑠) = tanh(𝑠) =
𝑒𝑠 − 𝑒−𝑠

𝑒𝑠 + 𝑒−𝑠
= 2( 1

1 + 𝑒−𝑠 ) − 1

0

1

-1

0

1

-1

0

1

-1



Chain Rule 

If	 


then	 


Used  chain rule to compute partial derivatives efficiently.

Transfer function must be differentiable (usually sigmoid, or tanh).


Note:	 if 	 derivative  


	  if 	 derivative  

𝑦 = 𝑔(𝑓(𝑥)) ≡ {𝑦 = 𝑔(𝑢)
𝑢 = 𝑓(𝑥)

𝜕𝑦
𝜕𝑥

=
𝜕𝑦
𝜕𝑢

∙
𝜕𝑢
𝜕𝑥

𝑧(𝑠) =
1

1 + 𝑒−𝑠
𝑧′￼(𝑠) = 𝑧(1 − 𝑧)

𝑧(𝑠) = tanh(𝑠) 𝑧′￼(𝑠) = 1 − 𝑧2
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𝑔(𝑊3,5 ∙ 𝑔(𝑊1,3 ∙ 𝑎1 + 𝑊2,3 ∙ 𝑎2) + 𝑊4,5 ∙ 𝑔(𝑊1,4 ∙ 𝑎1 + 𝑊2,4 ∙ 𝑎2))



Backpropagation 
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Convenient	to	split	layers	into:


sigmoid	layer	and


linear	complete	layer

Z


S


y1
u1


y2
u2

x1 x2

w2,1 w1,2
w1,1 w2,2

v1 v2

c

b1 b2



Forward Pass 
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( )

𝑢1 = 𝑏1 + 𝑤11𝑥1 + 𝑤12𝑥2

𝑦1 = 𝑔(𝑢1)
𝑠 = 𝑐 + 𝑣1𝑦1 + 𝑣2𝑦2

𝑧 = 𝑔(𝑠)

𝐸 =
1
2

𝛴(𝑧 − 𝑡)2 t = target

Z

S


y1
u1


y2
u2

x1 x2

w2,1 w1,2
w1,1 w2,2

v1 v2

c

b1 b2



procedure BackpropLearner( )  


repeat

for each example   in   in random order do

	   for each input unit

for each layer from lowest to highest do

  

  

for each   from highest to lowest do

  

     until 

𝑋𝑠,  𝑌𝑠,  𝐸𝑠,  𝑙𝑎𝑦𝑒𝑟𝑠,  𝜂

𝑒 𝐸𝑠

𝑣𝑎𝑙𝑢𝑒𝑠[𝑖] ← 𝑋𝑖(𝑒)  𝑖

𝑣𝑎𝑙𝑢𝑒𝑠 ← OutputValues(layer, values)

𝑒𝑟𝑟𝑜𝑟 ← SumSqError(Ys(e), values)

𝑙𝑎𝑦𝑒𝑟

𝑒𝑟𝑟𝑜𝑟 ← Backprop(layer, error)

𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛

Backpropagation Algorithm
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: set of input features, 

: target features


: set of examples from which to learn


: a sequence of layers


: learning rate (gradient descent step size)      

𝑋𝑠 𝑋𝑠  =  {𝑋1, …, 𝑋𝑛}

𝑌𝑠

𝐸𝑠

𝑙𝑎𝑦𝑒𝑟𝑠

𝜂



Backpropagation Algorithm
function g(x) = 

function   =  [  for each output unit ]


function OutputValues(layer, input) // input is array with length  

define input [n] to be 1


 for each j	 // update output for layer


return output


function Backprop(layer, error)	 // each layer has an input and output array

if output layer // error is array with length 
delta = error


else
 for each i


  for each i, j, for learning rate η // perceptron rule

 for each i


return delta

1/(1 + e−x)

SumSqError(Ys, predicted)
1
2

∑ (Ys[ j] − predicted[ j])2  𝑗

𝑛𝑖

output[ j] ← g(∑n
i=0 wij ⋅ input[i])

𝑛𝑖

delta[i] ← output[i] ⋅ (1 − output[i]) ⋅ error[i]
wji ← wji + η ⋅ delta[ j] ⋅ input[i]

delta[i] ← ∑j wji ⋅ delta[ j]
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derivative



Neural Network – Applications 

• Autonomous Driving 


• Game Playing 


• Credit Card Fraud Detection 


• Handwriting Recognition 


• Financial Prediction 
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ALVINN (First demo of long distance autonomous driving)
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ALVINN 

• Autonomous Land Vehicle In a Neural Network 


•  later version included a sonar range finder

• 8×32 rangefinder input retina

• 29 hidden units

• 45 output units 


• Supervised Learning, from human actions (Behavioural Cloning) 

• additional “transformed” training items to cover emergency situations 

• Drove (mostly) autonomously from coast to coast in USA
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Training Tips 

• Re-scale inputs and outputs to be in the range 0 to 1 or −1 to 1


• Initialise weights to very small random values 


• On-line or batch learning 


• Three different ways to prevent overfitting:

• limit the number of hidden nodes or connections 

• limit the training time, using a validation set

• weight decay 


• Adjust the parameters:  learning rate (and momentum) to suit the 
particular task 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Neural Network Structure 

Two main network structures
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Neural Network Structure 

Two main network structures 
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Neural Network Structures 

Feed-forward network has connections only in one direction

• Every node receives input from “upstream” nodes; delivers output to “downstream” nodes


• no loops. 

• Represents a function of its current input


• has no internal state other than the weights themselves. 


Recurrent network feeds outputs back into its own inputs 

• Activation levels of network form a dynamical system


• may reach a stable state or exhibit oscillations or even chaotic behaviour

• Response of network to an input depends on its initial state


• which may depend on previous inputs.  

• Can support short-term memory 	
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Neural Networks

• Multiple layers form a hierarchical model, known as deep learning


• Convolutional neural networks are specialised for vision tasks


• Recurrent neural networks are used for time series


• Typical real-world network can have 10 to 20 layers with hundreds 
of millions of weights

• can take hours, days, months to learn on machines with 

thousands of cores
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Summary

• Vector-valued inputs and outputs


• Multi-layer networks can learn non-linearly separable functions 


• Hidden layers learn intermediate representation

✦ How many to use? 


• Prediction – Forward propagation 


• Gradient descent (Back-propagation)

✦ Local minima problems 


• Kernel trick can be introduced through a deep belief network
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