
Neural Networks

COMP3411/9814:	Artificial	Intelligence	

Lecture Overview

• Neurons – Biological and Artificial

• Perceptron Learning

• Linear Separability

• Multi-Layer Networks

• Back propagation

• Applications of neural networks

2

Sub-Symbolic Processing

3

Brain Regions

4

Brain Regions

5

Structure of a Typical Neuron

6

Brains

7

Biological Neurons

• The brain is made up of neurons (nerve cells) which have

• a cell body (soma)

• dendrites (inputs)

• an axon (outputs)

• synapses (connections between cells)

• Synapses can be excitatory or inhibitory and may change over time.

• When the inputs reach some threshold an action potential (electrical
pulse) is sent along the axon to the outputs.

8

Variety of Neuron Types

9

The Big Picture

• Human brain has 100 billion neurons with an
average of 10,000 synapses each

• Latency is about 3-6 milliseconds

• At most a few hundred “steps” in any mental
computation, but massively parallel

10

Artificial Neural Networks

• Information processing architecture loosely modelling the
brain

• Consists of many interconnected processing units (neurons)

• Work in parallel to accomplish a global task

• Generally used to model relationships between inputs and
outputs or to find patterns in data

11

Artificial Neural Networks (ANN)

• Weights can be positive or negative and may change over time (learning).

• The input function is the weighted sum of the activation levels of inputs.

• The activation level is a non-linear transfer function g	of this input:

Some nodes are inputs (sensing), some are outputs (action)

activation𝑖 = 𝑔(𝑠𝑖) = 𝑔 ∑
𝑗

𝑤𝑖𝑗𝑥𝑗

12

❑ ANNs	nodes	have	

➢ inputs	edges	with	some	weights	

➢ outputs	edges	with	weights

➢ activation	level	(function	of	inputs)

First artificial neurons: McCulloch-Pitts (1943)

• McCulloch-Pitts model:

• Inputs either 0 or 1.

• Output 0 or 1.

• Input can be either excitatory or inhibitory.

• Summing inputs

• If input is 1, and is excitatory, add 1 to sum.

• If input is 1, and is inhibitory, subtract 1 from sum.

• Threshold,

• if sum < threshold, T, output 0.

• Otherwise, output 1.

13

…

if sum < T then output is 0

else output is 1.

𝑠𝑢𝑚 = 𝑥1 ∙ 𝑤1 + 𝑥2 ∙ 𝑤2 + 𝑥3 ∙ 𝑤3+

McCulloch & Pitts Model of a Single Neuron

14

Activation Functions

Function takes the weighted sum of inputs and
produces output for node, given some threshold.

𝑔(𝑠)

15

𝑔(𝑠) = {1 if 𝑠 ≥ 0
0 if 𝑠 < 0

The sigmoid or logistic activation function

16

f(x) =
1

1 + e−x

Derivative is the slope of the functionf′￼(x) = f(x)(1 − f(x))

Simple Perceptron

The perceptron is a single layer feed-forward neural network.

17

Simple Perceptron

Simplest output function

Used to classify patterns said to be linearly separable

18

Implementing logical functions

McCulloch and Pitts - every Boolean function can be implemented:

19

Im plement ing logical f unct ions

AND

W0 = 1.5

W1 = 1

W2 = 1

OR

W2 = 1

W1 = 1

W0 = 0.5

NOT

W1 = –1

W0 = – 0.5

McCulloch and Pitts: every Boolean function can be implemented

Chapter 20, Sect ion 5 6

- -

Linear Separability

Examples:

Can we train a perceptron net to learn a new function?

Yes, as long as it is linearly separable

20

Linear Separability

21

The bias is proportional to the offset of the
plane from the origin

The weights determine the slope of the line

The weight vector is perpendicular to the plane

x2 = −
w1

w2
x1 −

θ
w2

Linear Separability
What kind of functions can a perceptron compute?

22

Linearly Separable

Linearly Separable

 Not Linearly Separable

Linearly Separable

• Linearly separable if there is a hyperplane where classification is true on one
side of hyperplane and false on other side

• For the sigmoid function, when the hyperplane is:

separates the predictions > 0.5 and < 0.5.

𝑥1 ∙ 𝑤1 + … + 𝑥𝑛 ∙ 𝑤𝑛 = 0

23

Variants in Linear Separators

• Which linear separator to use can result in various algorithms:

• Perceptron

• Logistic Regression

• Support Vector Machines (SVMs) ...

24

Kernel Trick

• Project points onto an higher dimensional space

• Becomes linearly separable

25

.

Perceptron Learning Algorithm

• Want to train perceptron to classify inputs correctly

• Compare output of network with correct output and
adjust the weights and bias to minimise the error

• So learning is parameter optimisation

• Can only handle linearly separable sets

26

Perceptron Learning Algorithm

27

• Training set: set of input vectors to train perceptron.

• During training, wi	and θ (bias)	are modified

‣ for convenience, let w0 = θ and x0 = 1

• η,	is	the	learning	rate,	a	small	positive	number

‣ small steps lessen possibility of destroying correct classifications

• Initialise wi	to some values

Perceptron Learning Rule

• Repeat for each training example

• Adjust the weight, , for each input, .

η	>	0	is	the	learning	rate
d	is	the	desired	output
y	is	the	actual	output

• If output correct, no change

• If d=1 but y=0, is increased when is positive and decreased when is
negative (want to increase)

• If d=0 but y=1, is decreased when is positive and increased when is
negative (want to decrease)

𝑤𝑖 𝑥𝑖

wi ← wi + η(d − y) ⋅ xi

𝑤𝑖 𝑥𝑖 𝑥𝑖
𝐰 ∙ 𝐱

𝑤𝑖 𝑥𝑖 𝑥𝑖
𝐰 ∙ 𝐱

28

Perceptron Convergence Theorem

For any data set that is linearly separable, perceptron learning rule
is guaranteed to find a solution in a finite number of iterations.

29

Historical Context

• In 1969, Minsky and Papert published book highlighting limitations of perceptrons

• Funding agencies redirected funding away from neural network research,

• preferring instead logic-based methods such as expert systems.

• Known since 1960’s that any logical function could be implemented in a 2-layer neural
network with step function activations.

• Problem was how to learn weights of multi-layer neural network from training examples

• Solution found in 1976 by Paul Werbos

• not widely known until rediscovered in 1986 by Rumelhart, Hinton and Williams.

30

Limitations of Perceptrons
Problem: many useful functions are not linearly separable (e.g. XOR)

Possible solution:

x1 XOR x2 can be written as: (x1 AND x2) NOR (x1 NOR x2)

Recall that AND, OR and NOR can be implemented by perceptrons.

31

Multi-Layer Neural Networks

• Given an explicit logical function, we can design a multi-layer neural network by hand to compute that function.

• But, if we are just given a set of training data, can we train a multi-layer network to fit these data?

32

Activation functions

33

(a) is a step function or threshold function

(b) is a sigmoid function

Changing the bias weight moves the threshold

1
1 + e−x
w0,i

Feed-Forward Example

• Feed-forward network = a parameterised family of nonlinear functions:

• Adjusting weights changes the function

𝑎5 = 𝑔(𝑊3,5 ∙ 𝑎3 + 𝑊4,5 ∙ 𝑎4)
= 𝑔(𝑊3,5 ∙ 𝑔(𝑊1,3 ∙ 𝑎1 + 𝑊2,3 ∙ 𝑎2) + 𝑊4,5 ∙ 𝑔(𝑊1,4 ∙ 𝑎1 + 𝑊2,4 ∙ 𝑎2))

34

wi,j ≡ 	weight	between	node	i	and	node	j

ANN Training as Cost Minimisation

• Define error function Mean Squared Error, E

y	=	actual	output
d	=	desired	output

• Think of E	as height of error landscape of
weight space.

• Aim to find a set of weights for which E	is
very low.

E =
1
2 ∑ (d − y)2

35

1. Forward pass: apply inputs to “lowest layer” and feed
activations forward to get output

2. Calculate error: difference between desired output and actual
output

3. Backward pass: Propagate errors back through network to
adjust weights

Backpropagation

36

Forward	Pass

Backprop

Gradient Descent

If transfer functions are smooth, can use multivariate calculus to
adjust weights by taking steepest downhill direction.

Parameter is the learning rate

• How the cost function affects the particular weight

• Find the weight

E =
1
2 ∑ (d − y)2

w ← w + η
∂E
∂w

η

37

Derivative of a Function

The derivative of a function is the slope
of the tangent at a point

Written

𝑦 = 𝑓(𝑥) = 𝑚𝑥 + 𝑏

𝑚 =
𝑐h𝑎𝑛𝑔𝑒 𝑖𝑛 𝑦
𝑐h𝑎𝑛𝑔𝑒 𝑖𝑛 𝑥

=
∆ 𝑦
∆ 𝑥

𝑑𝑦
𝑑𝑥

38

Partial Derivative

Derivative of a function of several variables with respect to one of
this variables

If

Derivative with respect to x is written:

𝑧 = 𝑓(𝑥, 𝑦, …)
𝜕𝑧
𝜕𝑥

39

Function must be continuous to be differentiable

40

Replace the (discontinuous) step function with a differentiable function, such as the sigmoid:

or hyperbolic tangent

 

	 (-1 to 1)

𝑔(𝑠) =
1

1 + 𝑒−𝑠

𝑔(𝑠) = tanh(𝑠) =
𝑒𝑠 − 𝑒−𝑠

𝑒𝑠 + 𝑒−𝑠
= 2(1

1 + 𝑒−𝑠) − 1

0

1

-1

0

1

-1

0

1

-1

Chain Rule

If	

then	

Used chain rule to compute partial derivatives efficiently.

Transfer function must be differentiable (usually sigmoid, or tanh).

Note:	 if 	 derivative

	 if 	 derivative

𝑦 = 𝑔(𝑓(𝑥)) ≡ {𝑦 = 𝑔(𝑢)
𝑢 = 𝑓(𝑥)

𝜕𝑦
𝜕𝑥

=
𝜕𝑦
𝜕𝑢

∙
𝜕𝑢
𝜕𝑥

𝑧(𝑠) =
1

1 + 𝑒−𝑠
𝑧′￼(𝑠) = 𝑧(1 − 𝑧)

𝑧(𝑠) = tanh(𝑠) 𝑧′￼(𝑠) = 1 − 𝑧2

41

𝑔(𝑊3,5 ∙ 𝑔(𝑊1,3 ∙ 𝑎1 + 𝑊2,3 ∙ 𝑎2) + 𝑊4,5 ∙ 𝑔(𝑊1,4 ∙ 𝑎1 + 𝑊2,4 ∙ 𝑎2))

Backpropagation

42

Convenient	to	split	layers	into:

sigmoid	layer	and

linear	complete	layer

Z

S

y1
u1

y2
u2

x1 x2

w2,1 w1,2
w1,1 w2,2

v1 v2

c

b1 b2

Forward Pass

43

()

𝑢1 = 𝑏1 + 𝑤11𝑥1 + 𝑤12𝑥2

𝑦1 = 𝑔(𝑢1)
𝑠 = 𝑐 + 𝑣1𝑦1 + 𝑣2𝑦2

𝑧 = 𝑔(𝑠)

𝐸 =
1
2

𝛴(𝑧 − 𝑡)2 t = target

Z

S

y1
u1

y2
u2

x1 x2

w2,1 w1,2
w1,1 w2,2

v1 v2

c

b1 b2

procedure BackpropLearner()

repeat

for each example in in random order do

	 for each input unit

for each layer from lowest to highest do

for each from highest to lowest do

 until

𝑋𝑠, 𝑌𝑠, 𝐸𝑠, 𝑙𝑎𝑦𝑒𝑟𝑠, 𝜂

𝑒 𝐸𝑠

𝑣𝑎𝑙𝑢𝑒𝑠[𝑖] ← 𝑋𝑖(𝑒) 𝑖

𝑣𝑎𝑙𝑢𝑒𝑠 ← OutputValues(layer, values)

𝑒𝑟𝑟𝑜𝑟 ← SumSqError(Ys(e), values)

𝑙𝑎𝑦𝑒𝑟

𝑒𝑟𝑟𝑜𝑟 ← Backprop(layer, error)

𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛

Backpropagation Algorithm

44

: set of input features,

: target features

: set of examples from which to learn

: a sequence of layers

: learning rate (gradient descent step size)

𝑋𝑠 𝑋𝑠 = {𝑋1, …, 𝑋𝑛}

𝑌𝑠

𝐸𝑠

𝑙𝑎𝑦𝑒𝑟𝑠

𝜂

Backpropagation Algorithm
function g(x) =

function = [for each output unit]

function OutputValues(layer, input) // input is array with length

define input [n] to be 1

 for each j	 // update output for layer

return output

function Backprop(layer, error)	 // each layer has an input and output array

if output layer // error is array with length
delta = error

else
 for each i

 for each i, j, for learning rate η // perceptron rule

 for each i

return delta

1/(1 + e−x)

SumSqError(Ys, predicted)
1
2

∑ (Ys[j] − predicted[j])2 𝑗

𝑛𝑖

output[j] ← g(∑n
i=0 wij ⋅ input[i])

𝑛𝑖

delta[i] ← output[i] ⋅ (1 − output[i]) ⋅ error[i]
wji ← wji + η ⋅ delta[j] ⋅ input[i]

delta[i] ← ∑j wji ⋅ delta[j]

45

derivative

Neural Network – Applications

• Autonomous Driving

• Game Playing

• Credit Card Fraud Detection

• Handwriting Recognition

• Financial Prediction

46

ALVINN (First demo of long distance autonomous driving)

47

ALVINN

• Autonomous Land Vehicle In a Neural Network

• later version included a sonar range finder

• 8×32 rangefinder input retina

• 29 hidden units

• 45 output units

• Supervised Learning, from human actions (Behavioural Cloning)

• additional “transformed” training items to cover emergency situations 

• Drove (mostly) autonomously from coast to coast in USA

48

Training Tips

• Re-scale inputs and outputs to be in the range 0 to 1 or −1 to 1

• Initialise weights to very small random values

• On-line or batch learning

• Three different ways to prevent overfitting:

• limit the number of hidden nodes or connections

• limit the training time, using a validation set

• weight decay

• Adjust the parameters: learning rate (and momentum) to suit the
particular task 

49

Neural Network Structure

Two main network structures

50

Neural Network Structure

Two main network structures

51

Neural Network Structures

Feed-forward network has connections only in one direction

• Every node receives input from “upstream” nodes; delivers output to “downstream” nodes

• no loops.

• Represents a function of its current input

• has no internal state other than the weights themselves.

Recurrent network feeds outputs back into its own inputs

• Activation levels of network form a dynamical system

• may reach a stable state or exhibit oscillations or even chaotic behaviour

• Response of network to an input depends on its initial state

• which may depend on previous inputs.

• Can support short-term memory 	

52

Neural Networks

• Multiple layers form a hierarchical model, known as deep learning

• Convolutional neural networks are specialised for vision tasks

• Recurrent neural networks are used for time series

• Typical real-world network can have 10 to 20 layers with hundreds
of millions of weights

• can take hours, days, months to learn on machines with

thousands of cores

53

Summary

• Vector-valued inputs and outputs

• Multi-layer networks can learn non-linearly separable functions

• Hidden layers learn intermediate representation

✦ How many to use?

• Prediction – Forward propagation

• Gradient descent (Back-propagation)

✦ Local minima problems

• Kernel trick can be introduced through a deep belief network

54

References

• Poole & Mackworth, Artificial Intelligence:
Foundations of Computational Agents, Chapter 7.

• Russell & Norvig,	Artificial	Intelligence:	a	Modern	
Approach, Chapters 18.6, 18.7 .

55

