
Planning
COMP3411/9814:	Artificial	Intelligence	 

Lecture Overview
• Reasoning About Action

• STRIPS Planner

• Forward planning

• Regression Planning

• Partial Order Planning

• GraphPlan

• Planning as Constraint Satisfaction

Agent acting in its environment

Planning
• Planning is deciding what to do based on an agent’s ability, its goals. and the

state of the world.

• Planning is finding a sequence of actions to solve a goal.

• Assumptions:

• World is deterministic.

• No exogenous events outside of control of robot change state of world.

• The agent knows what state it is in.

• Time progresses discretely from one state to the next.

• Goals are predicates of states that need to be achieved or maintained.

Planning Agent
• The planning agent or goal-based agent is more flexible than a reactive agent

because the knowledge that supports its decisions is represented explicitly
and can be modified.

• The agent’s behaviour can easily be changed.

• Doesn’t work when assumptions are violated

Planning Agent
• Environment changes due to the performance of actions

• Planning scenario

• Agent can control its environment

• Only atomic actions, not processes with duration

• Only single agent in the environment (no interference)

• Only changes due to agent executing actions (no evolution)

• More complex examples

• RoboCup soccer

• Delivery robot

• Self-driving car

Representation
• How to represent a classical planning problem?

• States, Actions, and Goals

• Can represent relation between states and actions

• explicit state space representation

• action-centric

• feature-based

Actions

• A deterministic action is a partial function from states to states.

• The preconditions of an action specify when the action can be carried out.

• The effect of an action specifies the resulting state.

Delivery Robot Example

The robot, called Rob, can buy coffee at the coffee shop, pick up
mail in the mail room, move, and deliver coffee and/or mail.

Delivery Robot Example

Actions:
mc – move clockwise 
mcc – move counterclockwise

puc – pickup coffee  
dc – deliver coffee  
pum – pickup mail 
dm – deliver mail

Features:
RLoc – Rob’s location

RHC – Rob has coffee

SWC – Sam wants coffee

MW – Mail is waiting

RHM – Rob has mail

Robot actions Features to describe states

mcc

mc

State Description

The	state	is	described	in	terms	of	the	following	features:

• RLoc - the robot’s location,

• coffee shop (cs), Sam’s office (of), the mail room (mr) or laboratory (lab)

• SWC - Sam wants coffee.

• The atom swc means Sam wants coffee and ¬ swc means Sam does
not want coffee.

Robot Actions
• Rob has six actions

• Rob can move clockwise (mc)

• Rob can move counterclockwise (mcc) or (mac), for now we use (mcc).

• Rob can pick up coffee (puc) if Rob is at the coffee shop.

• Rob can deliver coffee (dc) if Rob has coffee and is in the same location as Sam.

• Rob can pick up mail (pum) if Rob is in the mail room.

• Rob can deliver mail (dm) if Rob has mail and is in the same location as Sam.

• Assume that it is only possible for Rob to do one action at a time.

Explicit State-Space Representation

• The states are specifying the following:

• the robot’s location,

• whether the robot has coffee,

• whether Sam wants coffee,

• whether mail is waiting,

• whether the robot is carrying the mail.

⟨lab, ¬rhc, swc, ¬mw, rhm⟩

Explicit State-Space Representation

The complete representation includes the transitions for the other 62 states.

Explicit State-Space Representation

This is not a good representation:

• There are usually too many states to represent, to acquire, and to reason with.

• Small changes to the model mean a large change to the representation.

• Adding another feature means changing the whole representation.

• It does not represent the structure of states;

• there is much structure and regularity in the effects of actions that is not

reflected in the state transitions.

STRIPS Language for 
Problem Definition

• STRIPS = Stanford Research Institute Problem Solver

• Most planners use a “STRIPS-like representation”

• i.e. STRIPS with some extensions 

• STRIPS makes some simplifications:

• no variables in goals

• positive relations given only

• unmentioned relations are assumed false (c.w.a. – closed world assumption)

• effects are conjunctions of relations

STRIPS Representation

• Each action has a:

• precondition that specifies when the action can be carried out.

• effect a set of assignments of values to primitive features that are made true by this

action.

• Often split into an ADD list (things that become true after action)

• and DELETE list (things that become false after action)

Assumption: every primitive feature not mentioned in the effects is unaffected by the action.

Example STRIPS Representation

Pick-up coffee (puc):

• precondition: [cs, ¬rhc]

• effect: [rhc]

Deliver coffee (dc):

• precondition: [off, rhc]

• effect: [¬rhc, ¬swc]

Feature-Based 
Representation of Actions

• For each action:

• precondition is a proposition that specifies when the action can be

carried out.

• For each feature:

• causal rules that specify when the feature gets a new value and

• frame rules that specify when the feature keeps its value.

Example Feature-Based
Representation

• Precondition of pick-up coffee (puc):

 RLoc=cs ∧ ¬rhc

• Rules for “location is cs”: 		 	

 RLoc′=cs ← Rloc = off ∧ Act=mcc  
 RLoc′=cs ← Rloc = mr ∧ Act=mc 
 RLoc′=cs ← Rloc = cs ∧ Act mcc ∧ Act mc

• Rules for “robot has coffee”

 rhc′ ← Act=puc ∧ ¬rhc 
 rhc′ ← rhc ∧ Act dc 

≠ ≠

≠

causal rules

frame rule

• Causal rules say how features change

• Frame rules say how features stay the same

Forward Planning

• Nodes are states in the world

• Arcs correspond to actions that transform one state into another

• Start node is the initial state

• If goal condition is satisfied, search terminates successfully

• A path corresponds to a plan to achieve goal

Forward Search Actions:
mc – move clockwise 
mcc – move counterclockwise

puc – pickup coffee  
dc – deliver coffee  
pum – pickup mail 
dm – deliver mail

Features:
RLoc – Rob’s location

RHC – Rob has coffee

SWC – Sam wants coffee

MW – Mail is waiting

RHM – Rob has mail

Locations:
cs – coffee shop

off – office

lab – laboratory

mr – mail room

Goal:
¬SWC – Sam wants coffee

Initial:
SWC – Sam wants coffee

Recall our Prolog Planner
% State of the robot's world = state(RobotLocation, BasketLocation, RubbishLocation)

% action(Action, State, NewState): Action in State produces NewState

% We assume robot never drops rubbish on floor and never pushes rubbish around

action(pickup,	 % Pick up rubbish from floor

state(Pos1, Pos2, floor(Pos1)),	 % Before action, robot and rubbish both at Pos1

state(Pos1, Pos2, held)).	 % After action, rubbish held by robot

action(drop,	 % Drop rubbish into basket

state(Pos, Pos, held),	 % Before action, robot and basket both at Pos

state(Pos, Pos, in_basket)).	 % After action, rubbish in basket

action(push(Pos, NewPos),	 % Push basket from Pos to NewPos

state(Pos, Pos, Loc),	 % Before action, robot and basket both at Pos

state(NewPos, NewPos, Loc)).	 % After action, robot and basket at NewPos

action(go(Pos1, NewPos1),	 % Go from Pos1 to NewPos1

state(Pos1, Pos2, Loc),	 % Before action, robot at Pos1

state(NewPos1, Pos2, Loc)).	 % After action, robot at Pos2

% plan(StartState, FinalState, Plan)

plan(State, State, []).	 % to achieve State from State itself, do nothing

plan(State1, GoalState, [Action1 | RestofPlan]) :-

action(Action1, State1, State2),	 % Make first action resulting in State2

plan(State2, GoalState, RestofPlan). 	 % Find rest of plan

Regression Planning

(Backward Search)

• Nodes are subgoals.

• Arcs correspond to actions. An arc from node g to g′, labelled with action act,
means

• act is the last action that is carried out before subgoal g is achieved, and

• node g′ is a subgoal that must be true immediately before act so that g is
true immediately after act.

• The start node is the planning goal to be achieved.

• The goal condition for the search, goal(g), is true if g is true of the initial state.

Regression Planning
Goal State Actions:

mc – move clockwise 
mcc – move counterclockwise

puc – pickup coffee  
dc – deliver coffee  
pum – pickup mail 
dm – deliver mail

Features:
RLoc – Rob’s location

RHC – Rob has coffee

SWC – Sam wants coffee

MW – Mail is waiting

RHM – Rob has mail

Locations:
cs – coffee shop

off – office

lab – laboratory

mr – mail room

Backward Regression

• g’ is the regression from goal g over action a

• I.e. going backwards from g, we look for an action,
a, that has preconditions and effects that satisfy g’

g ' = (g − Add(a))∪Precond(a)

Backward Chaining

% State of the robot's world = state(RobotLocation, BasketLocation, RubbishLocation)

% action(Action, State, NewState): Action in State produces NewState

% We assume robot never drops rubbish on floor and never pushes rubbish around

plan_backwards(State, State, []).	 % To achieve State from State itself, do nothing

plan_backwards(State1, GoalState, [Action | RestofPlan]) :-	 % Actions will be in reverse order

action(Action, PreviousState, GoalState),	 % Find an action tat achieves GoalState

plan_backwards(State1, PreviousState, RestofPlan). 	 % Make PreviousState the new goal

id_plan_backwards(Start, Goal, Plan) :-

append(RevPlan, _, _),

plan_backwards(Start, Goal, RevPlan),

reverse(RevPlan, Plan).

?- id_plan_backwards(state(door, corner, floor(middle)), state(_, _, in_basket), Plan).

X = [go(door, corner), push(corner, middle), pickup, drop]

Relational State Representation
First-order representations are more flexible

• e.g. states in blocks world can be represented by set of relations

• 1, 2, 3, 4 represent positions on a table:

on(c, a).
on(a, 1).
on(b, 3).
clear(2).
clear(4).
clear(b).
clear(c).

Defining Goals and Possible Actions

• Example of goals:

 	 on(a,	b),	on(b,	c)	

• Example of action:

	 move(a,	1,	b)	

 (Move block a from 1 to b)

• Action preconditions:

 clear(a),	on(a,	1),	clear(b)	

• Action effects:

 on(a,	b),	clear(1),	¬	on(a,	1),	¬	clear(b)													

“add” (true after action)

“delete” (no longer true after action)

STRIPS Action Schema
Action schema represents a set of actions using variables 
(variable names start with capital letter, like Prolog)

Action:

				move(Block,	From,	To)

Precondition:

 clear(Block),	clear(To),	on(Block,	From)	

Adds:

 on(Block,	To),	clear(From)	

Deletes:

 on(Block,	From),	clear(To)	

Better with Additional Constraints
Action:

				move(Block,	From,	To)

Precondition for Action:

 clear(Block),	clear(To),	on(Block,	From)	

Additional constraints:

block(Block),	 % Object Block to be moved must be a block

object(To),	 % "To" is an object, i.e. a block or a place

To Block,	 % Block cannot be moved to itself

object(From),	 % "From" is a block or a place

From To,	 % Move to new position

Block From

≠

≠
≠

PDDL 
Planning Domain Description Language

• Extension of STRIPS representation

• Invented for planning competitions to provide an implementation independent
language for describing action schema and domain knowledge

• There are several variants to cover different planning domains

• e.g. continuous domains, continuous actions, probabilities, etc.

Example
Init:	 airport(mel) ∧ airport(syd) ∧ plane(p1) ∧ plane(p2) ∧ cargo(c1) ∧ cargo(c2) ∧ 

at(c1, syd) ∧ at(c2, mel) ∧ at(p1, syd) ∧ at(p2, mel)

Goal:	 at(c1, mel) ∧ at(c2, syd)

Action load(C, P, A)

PRECOND:	 cargo(C) ∧ plane(P) ∧ airport(A) ∧ at(C, A) ∧ at(P, A)

EFFECT:		 ¬ at(C, A) ∧ in(C, P)

Actionunload(C, P, A)

PRECOND:	 cargo(C) ∧ plane(P) ∧ airport(a) ∧ In(C, P) ∧ at(P, A)

EFFECT:		 at(C, A) ∧ ¬ in(C, P)

Actionfly(P, From, To)

PRECOND:	 plane(P) ∧ airport(From) ∧ airport(To) ∧ at(P, From)

EFFECT:		 ¬ at(P, From) ∧ at(P, To)

load(c1, p1, syd)

fly(p1, syd, mel)

unload(c1, p1, mel)

load(c2, p2, mel)

fly(p2, mel, syd)

unload(c2, p2, syd)

Simple Planning Algorithms
Forward search and goal regression

Sussman’s Anomaly
• Goal: on(a, b) ∧ on(b, c)

• Try achieving on(a, b) first

[move(c,a,floor), move(a,floor,b),
move(a,b,floor), move(b,floor,c)]

• Trying on(b, c) first

[move(b,floor,c), move(b,c,floor),
move(c,a,floor), move(a,floor,b)]

• Should be:

[move(c,a,floor), move(b,floor,c), move(a,floor,b)]

C
AB

C
AB

WARPLAN

Warren, D. H. D. (1974). Warplan: A system for generating plans. 

Memo No. 76, Department of Computational Logic, University of Edinburgh.

• Protect goals once achieved

• If an action undoes a goal

• try moving new action backwards through plan before the action that
achieved first goal

• check that goals before and after are preserved

[move(c,a,floor), move(a,floor,b), move(a,b,floor), ..]

[move(c,a,floor), .., move(a,floor,b)]

Try inserting plan for on(b,c) here

Partially Ordered Plans

Partial-Order Planning
Init:	 Tire(Flat) ∧ Tire(Spare) ∧ at(Flat, Axle) ∧ at(Spare, Boot)

Goal:	 at (Spare, Axle)

Action Remove(obj, loc)

PRECOND:		 at(obj, loc)

EFFECT:		 ¬ at(obj, loc) ∧ at(obj, Ground)

Action PutOn(t, Axle)

PRECOND:		 Tire(t) ∧ at(t, Ground) ∧ ¬ at(Flat, Axle)

EFFECT:		 ¬ at(t, Ground) ∧ at(t, Axle)

Partial-Order Planning
Start Finish

at(Spare,Boot)

at(Flat,Axle)

at(Spare,Axle)

FinishPutOn(Spare,Axle)

Remove(Spare,Boot)

Start
at(Spare,Boot)

at(Flat,Axle)

at(Spare,Axle) at(Spare,Ground)

¬ at(Flat,Axle)

at(Spare,Boot)

FinishPutOn(Spare,Axle)

Remove(Spare,Boot)

Remove(Flat,Axle)

Start
at(Spare,Boot)

at(Flat,Axle)

at(Spare,Axle) at(Spare,Ground)

¬ at(Flat,Axle)

at(Spare,Boot)

at(Flat,Axle)

Forward Planning

• Forward planners are now among the best.

• Use heuristics to estimate costs

• Possible to use heuristic search, like A*, to reduce search

Planning Graphs
• Use constraint solving to achieve better heuristic estimates

• Only for propositional problems

• Like consistency checking in CSP

• preprocess constraints to create a planning graph

• planning graph constrains possible states and actions

• Planning graph is NOT a plan

• It constrains the range of possible plans

Planning Graph
• A sequence of levels that correspond to time steps in plan

• Level 0 is initial state

• Each level consists of:

• Set of all literals that could be true at that time step

• depending on actions executed in preceding time step

• Set of all actions that could have their preconditions satisfied at that time step

• depending on which literals are true

Mutual Exclusion

• Actions

• Inconsistent effects: One action negates an effect of the other

• Competing needs: Precondition of one action is mutually exclusive with

a precondition of the other

• Literals

• One literal is the negation of the other

• Inconsistent support: Each possible pair of actions that could achieve

the two literals is mutually exclusive

Example
Init: Have (Cake)

Goal: Have(Cake) ∧ Eaten(Cake)

Action: Eat (Cake)

PRECOND: Have(Cake)

EFFECT: ¬ Have(Cake) ∧ Eaten(Cake)

Action: Bake (Cake)

PRECOND: ¬ Have(Cake)

EFFECT: Have(Cake)

Cake Example

• Start at level and determine action level and next level .

• – all actions whose preconditions are satisfied in the previous level.

• Connect precondition and effect of actions

• Inaction is represented by persistent actions

• Level contains the actions that could occur

• Conflicts between actions are represented by mutex links

S0 A0 S1
A0

S0 → S1

A0

Cake Example

• Level contains all literals that could result from picking any subset of actions in

• Conflicts between literals that cannot occur together are represented by mutex links.

• defines multiple states and the mutex links are the constraints that define this set of states.

• Continue until goal is satisfied in level , or no change in consecutive levels: levelled off

S1 A0

S1

Si

Planning Graphs and Heuristic Estimation

• Planning Graphs provide information about the problem

• A literal that does not appear in final level of graph cannot be
achieved by any plan.

• Useful for backward search (cost = inf).

• Level of appearance can be cost estimate of achieving goal literals
= level cost.

• Cost of a conjunction of goals:

• max-level, sum-level and set-level heuristics.

Example: Spare tire problem
Init: at(Flat, Axle) ∧ at(Spare,Trunk)

Goal: at(Spare,Axle)

Action: Remove(Spare,Trunk)

	 PRECOND: at(Spare,Trunk)	

	 EFFECT: ¬at(Spare,Trunk) ∧ at(Spare,Ground))

Action: Remove(Flat,Axle)

	 PRECOND: at(Flat,Axle)	

	 EFFECT: ¬at(Flat,Axle) ∧ at(Flat,Ground))

Action: PutOn(Spare,Axle)

	 PRECOND: at(Spare,Ground) ∧¬at(Flat,Axle)

	 EFFECT: at(Spare,Axle) ∧ ¬at(Spare,Ground))

Action: LeaveOvernight

	 PRECOND:

	 EFFECT: at(Flat,Axle) ∧ at(Spare,trunk) ∧ ¬ at(Spare,Ground) ∧ ¬ at(Spare,Axle) ∧ ¬ at(Flat,Ground)

GRAPHPLAN Example

• Initially graph consist of literals from initial state and literals from closed world assumption ().

• Add actions whose preconditions are satisfied by expanding (next slide)

• Also add persistence actions and mutex relations

• Add the effects at level

• Repeat until goal is in level

S0
A0

S1
Si

GRAPHPLAN Example

• Expanding graph looks for mutex relations

• Inconsistent effects

• E.g. inconsistent because

• Interference

• E.g. but can’t have as PRECOND and as EFFECT

• Competing needs

• E.g. due to

• Inconsistent support

• E.g. in ,

Remove(Spare, Trunk) ∧ LeaveOverNight at(Spare, Ground) ∧ ¬at(Spare, Ground)

Remove(Flat, Axle) ∧ LeaveOverNight at(Flat, Axle) ¬at(Flat, Axle)

PutOn(Spare, Axle) ∧ Remove(Flat, Axle) at(Flat, Axle) ∧ ¬at(Flat, Axle)

S2 at(Spare, Axle) ∧ at(Flat, Axle)

GRAPHPLAN Example

• If goal literals exist in and are not mutex with any other solution might exist

• To extract solution use Boolean CSP to solve the problem or backwards search:

• Initial state: last level of graph + goal literals of planning problem

• Actions: select any set of non-conflicting actions that cover the goals in the state

• Try to reach level such that all goals are satisfied

• Cost = 1 for each action.

S2 →

S0

Extracting the Plan

• Heuristic forward search using A* can also find path from start to goal

• Cost is based on level in graph

Summary
• Reasoning About Action

• STRIPS Planner

• Forward planning

• Regression Planning

• Partial Order Planning

• GraphPlan

• Planning as Constraint Satisfaction

