
COMP3411 Tutorial - Week 5 
Logic 

Question 1 - Propositional Logic
Decide whether each of the following sentences is valid, satisfiable, or unsatisfiable. Verify 
your decisions using truth tables or logical equivalence and inference rules. For those that are 
satisfiable, list all the models that satisfy them. 

a. Smoke ⇒ Smoke 
Valid [implication, excluded middle] 

b. Smoke ⇒ Fire Satisfiable 

Models are: {Smoke, Fire}, {Fire}, {}.

c. ( Smoke ⇒ Fire ) ⇒ ( ¬ Smoke ⇒ ¬ Fire ) Satisfiable 

Models are: {Smoke, Fire}, {Smoke}, {} 
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Activity 8.1 Three Godesses in a Temple

Three goddesses were sitting in an old Indian temple. Their names were Truth, Lie and Wisdom. Truth
always told the truth, Lie always lied and Wisdom sometimes told the truth and sometimes lied. A man
entered the temple. He first asked the goddess on the left: "Who is sitting next to you?" "Truth," she
answered. He then asked the middle one: "Who are you?" "Wisdom." Finally he asked the one on the
right: "Who is your neighbor?" "Lie," she replied. Can you say which goddess was which?

The goddess on left cannot be True because she said someone else was True. The middle one cannot be
True either, so the one on the right must be True. This means the middle one is Lie and the left goddess is
Wisdom.

Activity 8.2 Validity and Satisfiability

(Exercise 7.10 from R & N)

Decide whether each of the following sentences is valid, satisfiable, or neither. Verify your decisions using
truth tables or equivalence and inference rules. For those that are satisfiable, list all the models that satisfy
them.

a. Smoke ⇒ Smoke

Valid   [implication, excluded middle]

b. Smoke ⇒ Fire

Satisfiable

Smoke Fire Smoke ⇒⇒ Fire
T T T
T F F
F T T
F F T

Models are: {Smoke, Fire}, {Fire}, {}

c. ( Smoke ⇒ Fire ) ⇒ ( ¬ Smoke ⇒ ¬ Fire )
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Satisfiable

Smoke Fire Smoke ⇒⇒ Fire ¬ Smoke ⇒⇒ ¬ Fire KB
T T T T T
T F F T T
F T T F F
F F T T T

Models are: {Smoke, Fire}, {Smoke}, {}

d. Smoke ∨ Fire ∨ ¬ Fire

Valid

e. (( Smoke ∧ Heat ) ⇒ Fire ) ⇔ (( Smoke ⇒ Fire ) ∨ ( Heat ⇒ Fire ))

Valid
(( S ∧ H ) ⇒ F ) ⇔ (F ∨ ¬(S ∧ H)) [implication]

⇔ (F ∨ ¬ S ∨ ¬ H) [de Morgan]
⇔ (F ∨ ¬ S ∨ F ∨ ¬ H) [idempotent, commutativity]
⇔ (S ⇒ F) ∨ (H ⇒ F) [implication]

f. ( Smoke ⇒ Fire ) ⇒ (( Smoke ∧ Heat ) ⇒ Fire )

Valid
( S ⇒ F ) ⇔ ( F ∨ ¬ S ) [implication]

⇒ ( F ∨ ¬ S ∨ ¬ H ) [generalization]
⇒ ( F ∨ ¬ ( S ∧ H )) [de Morgan]
⇒ (( S ∧ H ) ⇒ F ) [conditional]

g. Big ∨ Dumb ∨ ( Big ⇒ Dumb )

Valid
Big ∨ Dumb ∨ ( Big ⇒ Dumb ) ⇔ Big ∨ Dumb ∨ Dumb ∨ ¬ Big [implication]

⇔ Big ∨ ¬ Big ∨ Dumb [idempotent]
⇔ TRUE ∨ Dumb [excluded middle]
⇔ TRUE

h. ( Big ∧ Dumb ) ∨ ¬ Dumb

Satisfiable

Big Dumb (Big ∧∧ Dumb) (Big ∧∧ Dumb) ∨∨ ¬ Dumb
T T T T
T F F T



Models are: {Big, Dumb}, {Big}, {} 
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Satisfiable

Smoke Fire Smoke ⇒⇒ Fire ¬ Smoke ⇒⇒ ¬ Fire KB
T T T T T
T F F T T
F T T F F
F F T T T

Models are: {Smoke, Fire}, {Smoke}, {}

d. Smoke ∨ Fire ∨ ¬ Fire

Valid

e. (( Smoke ∧ Heat ) ⇒ Fire ) ⇔ (( Smoke ⇒ Fire ) ∨ ( Heat ⇒ Fire ))

Valid
(( S ∧ H ) ⇒ F ) ⇔ (F ∨ ¬(S ∧ H)) [implication]

⇔ (F ∨ ¬ S ∨ ¬ H) [de Morgan]
⇔ (F ∨ ¬ S ∨ F ∨ ¬ H) [idempotent, commutativity]
⇔ (S ⇒ F) ∨ (H ⇒ F) [implication]

f. ( Smoke ⇒ Fire ) ⇒ (( Smoke ∧ Heat ) ⇒ Fire )

Valid
( S ⇒ F ) ⇔ ( F ∨ ¬ S ) [implication]

⇒ ( F ∨ ¬ S ∨ ¬ H ) [generalization]
⇒ ( F ∨ ¬ ( S ∧ H )) [de Morgan]
⇒ (( S ∧ H ) ⇒ F ) [conditional]

g. Big ∨ Dumb ∨ ( Big ⇒ Dumb )

Valid
Big ∨ Dumb ∨ ( Big ⇒ Dumb ) ⇔ Big ∨ Dumb ∨ Dumb ∨ ¬ Big [implication]

⇔ Big ∨ ¬ Big ∨ Dumb [idempotent]
⇔ TRUE ∨ Dumb [excluded middle]
⇔ TRUE

h. ( Big ∧ Dumb ) ∨ ¬ Dumb

Satisfiable

Big Dumb (Big ∧∧ Dumb) (Big ∧∧ Dumb) ∨∨ ¬ Dumb
T T T T
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F T F F
F F F T

Models are: {Big, Dumb}, {Big}, {}

Activity 8.3 Resolution and Conjunctive Normal Form

(Exercise 7.2 from R & N)

Consider the following Knowledge Base of facts:

If the unicorn in mythical, then it is immortal, but if it is not mythical, then it is mortal and a
mammal. If the unicorn in either immortal or a mammal, then it is horned. The unicorn is
magical if it is horned.

1. Translate the above statements into Propositional Logic.

  Myth ⇒ ¬ Mortal
¬Myth ⇒ ( Mortal ∧ Mammal )
¬Mortal ∨ Mammal ⇒ Horned
  Horned ⇒ Magic

2. Convert this Knowledge Base into Conjunctive Normal Form.

(¬Myth ∨ ¬ Mortal) ∧ (Myth ∨ Mortal) ∧ (Myth ∨ Mammal) ∧ (Mortal ∨ Horned) ∧ (¬Mammal ∨
Horned) ∧ (¬Horned ∨ Magic)

3. Use a series of resolutions to prove that the unicorn is Horned.

Using Proof by Contradiction, we add to the database the negative of what we are trying to prove:

¬Horned

We then try to derive the "empty clause" by a series of Resolutions:

¬Horned ∧ (Mortal ∨ Horned)
   Mortal

¬Horned ∧ (¬Mammal ∨ Horned)
   ¬Mammal

Mortal ∧ (¬Myth ∨ ¬Mortal)
   ¬Myth

¬Myth ∧ (Myth ∨ Mammal)
   Mammal

Mammal ∧ ¬Mammal

Having derived the empty clause, the proof (of Horned) is complete.



Question 2 - Tautologies 
Determine whether the following sentences are valid (i.e. tautologies) using truth tables.  

(i) ((P∨Q)∧¬P)→Q 
(ii) ((P →Q)∧¬(P →R))→(P →Q)  
(iii) ¬(¬P ∧P)∧P 
(iv) (P ∨Q)→¬(¬P ∧¬Q) 

4. (i) CNF(P → Q)
⇔ ¬P ∨Q [Remove →]

CNF(¬Q)
⇔ ¬Q

CNF(¬¬P )
⇔ P [Double Negation]

Proof:
1. ¬P ∨Q [Hypothesis]
2. ¬Q [Hypothesis]
3. P [Negation of Query]
4. Q 1, 3 Resloution
5. ! 2, 4 Resloution

(ii) CNF(P → Q)
⇔ ¬P ∨Q

CNF(¬(¬Q → ¬P ))
⇔ ¬(¬¬Q ∨ ¬P ) [Remove →]
⇔ ¬(Q ∨ ¬P ) [Double Negation]
⇔ ¬Q ∧ ¬¬P [De Morgan]
⇔ ¬Q ∧ P [Double Negation]

Proof:
1. ¬P ∨Q [Hypothesis]
2. ¬Q [Negation of Query]
3. P [Negation of Query]
4. ¬P 1, 2 Resolution
5. ! 3, 4 Resolution

(iii) P → Q,Q → R % P → R

CNF(P → Q)
⇔ ¬P ∨Q

CNF(Q → R)
⇔ ¬Q ∨R

CNF(¬(P → R))
⇔ ¬(¬P ∨R) [Remove →]
⇔ ¬¬P ∧ ¬R [De Morgan]
⇔ P ∧ ¬R [Double Negation)

Proof:
1. ¬P ∨Q [Hypothesis]
2. ¬Q ∨R [Hypothesis]
3. P [Negation of Query]
4. ¬R [Negation of Query]
5. Q 1, 3 Resolution
6. R 2, 5 Resolution
7. ! 4, 6 Resolution

5. (i)

P Q ¬P P ∨Q (P ∨Q) ∧ ¬P ((P ∨Q) ∧ ¬P ) → Q

T T F T F T

T F F T F T
F T T T T T

F F T F F T

Last column is always true no matter what truth assignment to P and Q. Therefore
((P ∨Q) ∧ ¬P ) → Q is a tautology.

(ii) S = ((P → Q) ∧ ¬(P → R)) → (P → Q)

P Q R P → Q P → R ¬(P → R) (P → Q) ∧ ¬(P → R) S

T T T T T F F T
T T F T F T T T

T F T F T F F T
T F F F F T F T

F T T T T F F T

F T F T T F F T
F F T T T F F T

F F F T T F F T

Last column is always true no matter what truth assignment to P , Q and R. Therefore
((P → Q) ∧ ¬(P → R)) → (P → Q) is a tautology.

(iii)
P ¬P ¬P ∧ P ¬(¬P ∧ P ) ¬(¬P ∧ P ) ∧ P

T F F T T
F T F T F

Last column is not always true. Therefore ¬(¬P ∧ P ) ∧ P is not a tautology.

(iv) (P ∨Q) → ¬(¬P ∧ ¬Q)

P Q ¬P ¬Q P ∨Q ¬P ∧ ¬Q ¬(¬P ∧ ¬Q) (P ∨Q) → ¬(¬P ∧ ¬Q)
T T F F T F T T

T F F T T F T T

F T T F T F T T
F F T T F T F T

Last column is always true no matter what truth assignment to P and Q. Therefore
(P ∨Q) → ¬(¬P ∧ ¬Q) is a tautology.

6. (i) CNF(¬(((P ∨Q) ∧ ¬P ) → Q))
⇔ ¬(¬((P ∨Q) ∧ ¬P ) ∨Q) [Remove →]
⇔ ¬¬((P ∨Q) ∧ ¬P ) ∧ ¬Q [De Morgan]
⇔ (P ∨Q) ∧ ¬P ∧ ¬Q [Double Negation]

Proof:
1. P ∨Q [Negated Query]
2. ¬P [Negated Query]
3. ¬Q [Negated Query]
4. Q 1, 2 Resolution
5. ! 3, 4 Resolution

Therefore ¬(((P ∨Q) ∧ ¬P ) → Q) is a tautology.

(ii) CNF(¬(((P → Q) ∧ ¬(P → R)) → (P → Q)))
⇔ ¬(¬((¬P ∨Q) ∧ ¬(¬P ∨R)) ∨ (¬P ∨Q)) [Remove →]
⇔ ¬¬((¬P ∨Q) ∧ ¬(¬P ∨R)) ∧ ¬(¬P ∨Q) [De Morgan]
⇔ (¬P ∨Q) ∧ (¬¬P ∧ ¬R) ∧ (¬¬P ∧ ¬Q) [Double Negation and De Morgan]
⇔ (¬P ∨Q) ∧ (P ∧ ¬R) ∧ (P ∧ ¬Q) [Double Negation]

Proof:
1. ¬P ∨Q [Negated Query]
2. P [Negated Query]
3. ¬R [Negated Query]
4. ¬Q [Negated Query]
5. Q 1, 2 Resolution
6. ! 4, 5 Resolution

Therefore ((P → Q) ∧ ¬(P → R)) → (P → Q) is a tautology.

Last column is always true no matter what truth assignment to P and Q. Therefore
((P ∨Q) ∧ ¬P ) → Q is a tautology.

(ii) S = ((P → Q) ∧ ¬(P → R)) → (P → Q)

P Q R P → Q P → R ¬(P → R) (P → Q) ∧ ¬(P → R) S

T T T T T F F T
T T F T F T T T

T F T F T F F T
T F F F F T F T

F T T T T F F T

F T F T T F F T
F F T T T F F T

F F F T T F F T

Last column is always true no matter what truth assignment to P , Q and R. Therefore
((P → Q) ∧ ¬(P → R)) → (P → Q) is a tautology.

(iii)
P ¬P ¬P ∧ P ¬(¬P ∧ P ) ¬(¬P ∧ P ) ∧ P

T F F T T
F T F T F

Last column is not always true. Therefore ¬(¬P ∧ P ) ∧ P is not a tautology.

(iv) (P ∨Q) → ¬(¬P ∧ ¬Q)

P Q ¬P ¬Q P ∨Q ¬P ∧ ¬Q ¬(¬P ∧ ¬Q) (P ∨Q) → ¬(¬P ∧ ¬Q)
T T F F T F T T

T F F T T F T T

F T T F T F T T
F F T T F T F T

Last column is always true no matter what truth assignment to P and Q. Therefore
(P ∨Q) → ¬(¬P ∧ ¬Q) is a tautology.

6. (i) CNF(¬(((P ∨Q) ∧ ¬P ) → Q))
⇔ ¬(¬((P ∨Q) ∧ ¬P ) ∨Q) [Remove →]
⇔ ¬¬((P ∨Q) ∧ ¬P ) ∧ ¬Q [De Morgan]
⇔ (P ∨Q) ∧ ¬P ∧ ¬Q [Double Negation]

Proof:
1. P ∨Q [Negated Query]
2. ¬P [Negated Query]
3. ¬Q [Negated Query]
4. Q 1, 2 Resolution
5. ! 3, 4 Resolution

Therefore ¬(((P ∨Q) ∧ ¬P ) → Q) is a tautology.

(ii) CNF(¬(((P → Q) ∧ ¬(P → R)) → (P → Q)))
⇔ ¬(¬((¬P ∨Q) ∧ ¬(¬P ∨R)) ∨ (¬P ∨Q)) [Remove →]
⇔ ¬¬((¬P ∨Q) ∧ ¬(¬P ∨R)) ∧ ¬(¬P ∨Q) [De Morgan]
⇔ (¬P ∨Q) ∧ (¬¬P ∧ ¬R) ∧ (¬¬P ∧ ¬Q) [Double Negation and De Morgan]
⇔ (¬P ∨Q) ∧ (P ∧ ¬R) ∧ (P ∧ ¬Q) [Double Negation]

Proof:
1. ¬P ∨Q [Negated Query]
2. P [Negated Query]
3. ¬R [Negated Query]
4. ¬Q [Negated Query]
5. Q 1, 2 Resolution
6. ! 4, 5 Resolution

Therefore ((P → Q) ∧ ¬(P → R)) → (P → Q) is a tautology.

Last column is always true no matter what truth assignment to P and Q. Therefore
((P ∨Q) ∧ ¬P ) → Q is a tautology.

(ii) S = ((P → Q) ∧ ¬(P → R)) → (P → Q)

P Q R P → Q P → R ¬(P → R) (P → Q) ∧ ¬(P → R) S

T T T T T F F T
T T F T F T T T

T F T F T F F T
T F F F F T F T

F T T T T F F T

F T F T T F F T
F F T T T F F T

F F F T T F F T

Last column is always true no matter what truth assignment to P , Q and R. Therefore
((P → Q) ∧ ¬(P → R)) → (P → Q) is a tautology.

(iii)
P ¬P ¬P ∧ P ¬(¬P ∧ P ) ¬(¬P ∧ P ) ∧ P

T F F T T
F T F T F

Last column is not always true. Therefore ¬(¬P ∧ P ) ∧ P is not a tautology.

(iv) (P ∨Q) → ¬(¬P ∧ ¬Q)

P Q ¬P ¬Q P ∨Q ¬P ∧ ¬Q ¬(¬P ∧ ¬Q) (P ∨Q) → ¬(¬P ∧ ¬Q)
T T F F T F T T

T F F T T F T T

F T T F T F T T
F F T T F T F T

Last column is always true no matter what truth assignment to P and Q. Therefore
(P ∨Q) → ¬(¬P ∧ ¬Q) is a tautology.

6. (i) CNF(¬(((P ∨Q) ∧ ¬P ) → Q))
⇔ ¬(¬((P ∨Q) ∧ ¬P ) ∨Q) [Remove →]
⇔ ¬¬((P ∨Q) ∧ ¬P ) ∧ ¬Q [De Morgan]
⇔ (P ∨Q) ∧ ¬P ∧ ¬Q [Double Negation]

Proof:
1. P ∨Q [Negated Query]
2. ¬P [Negated Query]
3. ¬Q [Negated Query]
4. Q 1, 2 Resolution
5. ! 3, 4 Resolution

Therefore ¬(((P ∨Q) ∧ ¬P ) → Q) is a tautology.

(ii) CNF(¬(((P → Q) ∧ ¬(P → R)) → (P → Q)))
⇔ ¬(¬((¬P ∨Q) ∧ ¬(¬P ∨R)) ∨ (¬P ∨Q)) [Remove →]
⇔ ¬¬((¬P ∨Q) ∧ ¬(¬P ∨R)) ∧ ¬(¬P ∨Q) [De Morgan]
⇔ (¬P ∨Q) ∧ (¬¬P ∧ ¬R) ∧ (¬¬P ∧ ¬Q) [Double Negation and De Morgan]
⇔ (¬P ∨Q) ∧ (P ∧ ¬R) ∧ (P ∧ ¬Q) [Double Negation]

Proof:
1. ¬P ∨Q [Negated Query]
2. P [Negated Query]
3. ¬R [Negated Query]
4. ¬Q [Negated Query]
5. Q 1, 2 Resolution
6. ! 4, 5 Resolution

Therefore ((P → Q) ∧ ¬(P → R)) → (P → Q) is a tautology.

Last column is always true no matter what truth assignment to P and Q. Therefore
((P ∨Q) ∧ ¬P ) → Q is a tautology.

(ii) S = ((P → Q) ∧ ¬(P → R)) → (P → Q)

P Q R P → Q P → R ¬(P → R) (P → Q) ∧ ¬(P → R) S

T T T T T F F T
T T F T F T T T

T F T F T F F T
T F F F F T F T

F T T T T F F T

F T F T T F F T
F F T T T F F T

F F F T T F F T

Last column is always true no matter what truth assignment to P , Q and R. Therefore
((P → Q) ∧ ¬(P → R)) → (P → Q) is a tautology.

(iii)
P ¬P ¬P ∧ P ¬(¬P ∧ P ) ¬(¬P ∧ P ) ∧ P

T F F T T
F T F T F

Last column is not always true. Therefore ¬(¬P ∧ P ) ∧ P is not a tautology.

(iv) (P ∨Q) → ¬(¬P ∧ ¬Q)

P Q ¬P ¬Q P ∨Q ¬P ∧ ¬Q ¬(¬P ∧ ¬Q) (P ∨Q) → ¬(¬P ∧ ¬Q)
T T F F T F T T

T F F T T F T T

F T T F T F T T
F F T T F T F T

Last column is always true no matter what truth assignment to P and Q. Therefore
(P ∨Q) → ¬(¬P ∧ ¬Q) is a tautology.

6. (i) CNF(¬(((P ∨Q) ∧ ¬P ) → Q))
⇔ ¬(¬((P ∨Q) ∧ ¬P ) ∨Q) [Remove →]
⇔ ¬¬((P ∨Q) ∧ ¬P ) ∧ ¬Q [De Morgan]
⇔ (P ∨Q) ∧ ¬P ∧ ¬Q [Double Negation]

Proof:
1. P ∨Q [Negated Query]
2. ¬P [Negated Query]
3. ¬Q [Negated Query]
4. Q 1, 2 Resolution
5. ! 3, 4 Resolution

Therefore ¬(((P ∨Q) ∧ ¬P ) → Q) is a tautology.

(ii) CNF(¬(((P → Q) ∧ ¬(P → R)) → (P → Q)))
⇔ ¬(¬((¬P ∨Q) ∧ ¬(¬P ∨R)) ∨ (¬P ∨Q)) [Remove →]
⇔ ¬¬((¬P ∨Q) ∧ ¬(¬P ∨R)) ∧ ¬(¬P ∨Q) [De Morgan]
⇔ (¬P ∨Q) ∧ (¬¬P ∧ ¬R) ∧ (¬¬P ∧ ¬Q) [Double Negation and De Morgan]
⇔ (¬P ∨Q) ∧ (P ∧ ¬R) ∧ (P ∧ ¬Q) [Double Negation]

Proof:
1. ¬P ∨Q [Negated Query]
2. P [Negated Query]
3. ¬R [Negated Query]
4. ¬Q [Negated Query]
5. Q 1, 2 Resolution
6. ! 4, 5 Resolution

Therefore ((P → Q) ∧ ¬(P → R)) → (P → Q) is a tautology.



Question 3 - Entailment 
Show using the truth table method that the corresponding inferences are valid.  

(i)P → Q, ¬Q |= ¬P  
(ii) P → Q |= ¬Q → ¬P   
(iii) P → Q, Q → R |= P → R 

COMP9414: Artificial Intelligence

Solutions Week 5: Propositional Logic

1. (i) (¬Ja ∧ ¬Jo) → T

Where:
Ja: Jane is in town

Jo: John is in town
T : we will play tennis

(ii) R ∨ ¬R

Where:
R: it will rain today

(iii) ¬S → ¬P , or ¬(P ∧ ¬S) (check these are equivalent)
Where:
S: you study
P : you will pass this course

2. (i) P → Q

¬P ∨Q [Remove →]

(ii) (P → ¬Q) → R
¬(¬P ∨ ¬Q) ∨R [Remove →]
(¬¬P ∧ ¬¬Q) ∨R [De Morgan]
(P ∧Q) ∨R [Double Negation]
(P ∨R) ∧ (Q ∨R) [Distribute ∨ over ∧]

(iii) ¬(P ∧ ¬Q) → (¬R ∨ ¬Q)
¬¬(P ∧ ¬Q) ∨ (¬R ∨ ¬Q) [Remove →]
(P ∧ ¬Q) ∨ (¬R ∨ ¬Q) [Double Negation]
(P ∨ ¬R ∨ ¬Q) ∧ (¬Q ∨ ¬R ∨ ¬Q) [Distribute ∨ over ∧]
This can be further simplified to (P ∨ ¬R ∨ ¬Q) ∧ (¬Q ∨ ¬R)
and even further simplified to ¬Q ∨ ¬R, since ¬Q ∨ ¬R subsumes P ∨ ¬R ∨ ¬Q

3. (i)

P Q P → Q ¬Q ¬P

T T T F F

T F F T F
F T T F T

F F T T T

In all rows where both P → Q and ¬Q true, ¬P is true. Therefore, valid inference.

(ii)

P Q ¬P ¬Q P → Q ¬Q → ¬P

T T F F T T

T F F T F F

F T T F T T
F F T T T T

In all rows where both P → Q true, ¬Q → ¬P is true. Therefore, valid inference.

(iii)

P Q R P → Q Q → R P → R

T T T T T T
T T F T F F

T F T F T T

T F F F T F
F T T T T T

F T F T F T
F F T T T T

F F F T T T

In all rows where both P → Q and Q → R true, P → R is true. Therefore, valid inference.



Question 4 - Inference Rules
(Exercise 7.2 from R & N) 

Consider the following Knowledge Base of facts: 

If the unicorn in mythical, then it is immortal, but if it is not mythical, then it is mortal and a 
mammal. If the unicorn in either immortal or a mammal, then it is horned. The unicorn is 
magical if it is horned.  

1. Translate the above statements into Propositional Logic.  

2. Convert this Knowledge Base into Conjunctive Normal Form. 

3. Use a series of resolutions to prove that the unicorn is Horned.  

4. Give all models that satisfy the Knowledge Base. Can you prove that the unicorn is 

Mythical? How about Magical? 

Because of the rule (Horned ⇒ Magic), Magic must also be True. We can construct a 
truth table for the remaining three variables: 
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F T F F
F F F T

Models are: {Big, Dumb}, {Big}, {}

Activity 8.3 Resolution and Conjunctive Normal Form

(Exercise 7.2 from R & N)

Consider the following Knowledge Base of facts:

If the unicorn in mythical, then it is immortal, but if it is not mythical, then it is mortal and a
mammal. If the unicorn in either immortal or a mammal, then it is horned. The unicorn is
magical if it is horned.

1. Translate the above statements into Propositional Logic.

  Myth ⇒ ¬ Mortal
¬Myth ⇒ ( Mortal ∧ Mammal )
¬Mortal ∨ Mammal ⇒ Horned
  Horned ⇒ Magic

2. Convert this Knowledge Base into Conjunctive Normal Form.

(¬Myth ∨ ¬ Mortal) ∧ (Myth ∨ Mortal) ∧ (Myth ∨ Mammal) ∧ (Mortal ∨ Horned) ∧ (¬Mammal ∨
Horned) ∧ (¬Horned ∨ Magic)

3. Use a series of resolutions to prove that the unicorn is Horned.

Using Proof by Contradiction, we add to the database the negative of what we are trying to prove:

¬Horned

We then try to derive the "empty clause" by a series of Resolutions:

¬Horned ∧ (Mortal ∨ Horned)
   Mortal

¬Horned ∧ (¬Mammal ∨ Horned)
   ¬Mammal

Mortal ∧ (¬Myth ∨ ¬Mortal)
   ¬Myth

¬Myth ∧ (Myth ∨ Mammal)
   Mammal

Mammal ∧ ¬Mammal

Having derived the empty clause, the proof (of Horned) is complete.
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Question 5 -  First Order Logic
Represent the following sentences in first-order logic, using a consistent vocabulary.
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4. Give all models that satisfy the Knowledge Base. Can you prove that the unicorn is Mythical? How
about Magical?

Because of the rule (Horned ⇒ Magic), Magic must also be True.

We can construct a truth table for the remaining three variables:

Myth Mortal Mammal Myth ⇒⇒ ¬ Mortal ¬ Myth ⇒⇒ (Mortal ∧∧ Mammal)  KB 
T T T F T F
T T F F T F
T F T T T T
T F F T T T
F T T T T T
F T F T F F
F F T T F F
F F F T F F

There are three models which satisfy the entire Knowledge Base:
{Horned, Magic, Myth, Mammal}, {Horned, Magic, Myth}, {Horned, Magic, Mortal, Mammal}.
We cannot prove that the unicorn is Mythical, because of the third model where Mythical is False.

Activity 8.4 Sentences in First Order Logic

Represent the following sentences in first-order logic, using a consistent vocabulary.

a. Some students studied French in 2016.

∃ x Student(x) ∧ Study(x,French,2016)

b. Only one student studied Greek in 2015.

∃x Study(x,Greek,2015) ∧ ∀y (Study(y,Greek,2015) ⇒ y = x )

sometimes written as

∃!x Study(x,Greek,2015)

c. The highest score in Greek is always higher than the highest score in French.

∀t ∃x ∀y Score(x,Greek,t) > Score(y,French,t)

d. Every person who buys a policy is smart.

∀x,p Person(x) ∧ Policy(p) ∧ Buy(x,p) ⇒ Smart(x)

e. No person buys an expensive policy.

¬∃x,p Person(x) ∧ Policy(p) ∧ Expensive(p) ∧ Buy(x,p)
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f. There is a barber who shaves all men in town who do not shave themselves.

∃b Barber(b) ∧ ∀m (Man(m) ∧ InTown(m) ∧ ¬Shave(m,m) ⇒ Shave(b,m))

g. Politicians can fool some of the people all of the time, and they can fool all of the people some of
the time, but they can't fool all of the people all of the time.

∀p ( Politician(p) ⇒ ((∃x∀t Fool(p,x,t)) ∧ (∃t∀x Fool(p,x,t)) ∧ (¬∀x∀t Fool(p,x,t))))

Activity 8.5 The Interplanetary Visitor

On a certain planet there are 100 highly intelligent but also highly religious inhabitants who all know and
see each other on a daily basis. Some number n of them have blue eyes, the rest have brown eyes. The
religious laws of the planet dictate that anybody who is able to prove that their own eyes must be blue has
to ritually commit suicide the same evening, at midnight. Everybody knows that everybody else will obey
this law without question. For this reason, it has become forbidden on the planet to discuss eye colour, and
all mirrors, cameras and other such devices have long since been destroyed. One day a visitor comes from
a neighboring planet whose inhabitants are known to always speak the truth. Everyone has gathered for
his departure. Just before closing the door of his spaceship, he says in a voice loud enough for everyone to
hear: "At least one of you has blue eyes." What will happen in the days (and nights) that follow?
(Hint: consider first the case n=1, then n=2, n=3, etc.)

First consider the case where there is only one inhabitant with blue eyes. When he looks
around and sees that everyone else has brown eyes, he will conclude that he must have blue
eyes and therefore commit suicide at midnight on the day of the visitor's departure.

If two inhabitants have blue eyes, each of them will see one other person with blue eyes.
Seeing the other person still alive the next day, each of them will conclude that they must
have blue eyes as well, so they will both commit suicide at midnight on the second day. We
can proceed inductively to conclude that, if n inhabitants have blue eyes, all of them will
commit suicide at midnight on the nth day.

This result is somewhat surprising because, in the case where more than two inhabitants have
blue eyes, everyone already knew that there was at least one inhabitant with blue eyes, and
everyone knew that everyone else knew it; so it may at first appear that the visitor is not
providing any new information. But this is not the case. For example, if exactly three
inhabitants A, B and C had blue eyes, then B knew that C knew that somebody had blue eyes,
but A didn't know that B knew that C knew that somebody had blue eyes. So there is always
some new information provided by the visitor.
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