
Tutorials COMP3411/9814 20T1
Week 3 Solutions

Question 1 - The route-finding problem using the
Romania map from Russell & Norvig

1. (Depth-first) Arad, Sibiu, Fagaras, Bucharest (note that the solution is found on the first
branch only because of the rule for ordering the successors alphabetically; this is not
usually the case!)

2. (Breadth-first) Arad, Sibiu, Timisoara, Zerind, Fagaras, Bucharest (assuming that the
search stops once the goal state is generated and that when expanding a node, previously
expanded nodes are checked to ensure that nodes with states already explored are not
added to the frontier, e.g. Arad which is generated via the paths Arad → Sibiu → Arad and
Arad → Sibiu → Oradea → Zerind → Arad)

3. (Uniform-cost) Arad (0), Zerind (75), Timisoara (118), Sibiu (140), Oradea (146),
Rimnicu Vilcea (220), Lugoj (229), Fagaras (239), Mehadia (299), Pitesti (317), Craiova
(366), Drobeta (374), Bucharest (418) (assuming a check that nodes with states previ-
ously generated are not added to the frontier, except when they have lower path cost than a
node with that state already on the frontier, in which case the node with higher path cost is
removed, so ignore Oradea (291) reached via Sibiu, and Sibiu (297) reached via Zerind
and Oradea)

4. (Iterative deepening) Arad, Arad, Sibiu, Timisoara, Zerind, Arad, Sibiu, Fagaras, Oradea,
Rimnicu Vilcea, Timisoara, Lugoj, Zerind, Oradea, Arad, Sibiu, Fagaras, Bucharest
(assuming a cycle check on each path, so omit Arad reached via Arad → Sibiu → Arad)

5. (Greedy) Arad (366), Sibiu (253), Fagaras (178), Bucharest (0)

6. (A∗) Arad (366), Sibiu (393), Rimnicu Vilcea (413), Pitesti (415), Fagaras (417),
Bucharest (418) (unexpanded states on the frontier are Timisoara (447), Zerind (449),
Craiova (526), Oradea (671)) – for example, f(Rimnicu Vilcea) = g(Rimnicu Vilcea) +
h(Rimnicu Vilcea) = 140 + 80 + 193 = 413 (remember to use the total path cost from Arad
to Rimnicu Vilcea here)

Question 2
 Fagaras (415) is expanded before Pitesti (417)

Question 3 - Path Search Algorithms on a Graph
Consider the task of finding a path from start state S to goal state G, given the distances and
heuristic values in this diagram:

For each of the following strategies, list the order in which the states are expanded. Whenever
there is a choice of states, you should select the one that comes first in alphabetical order. In
each case, you should skip any states that have previously been expanded, and you should
continue the search until the goal node is expanded.

(a) Breadth First Search
S, A, C, B, D, T, U, X, V, W, Y, Z, E, F, G

(b) Depth First Search
S, A, B, T, D, C, U, W, E, F, G

(c) Uniform Cost Search [Hint: first compute g() for each state in the graph]
S(0), A(2), C(3), B(4), D(5), U(6), X(7), T(8), V(9), W(10), Y(11), F(12), Z(13), E(14),
G(15)

(d) Greedy Search, using the heuristic shown S, C, X, Z, G

(e) A*Search, using the heuristic shown
S(9), C(10), A(11), B(11), D(12), X(12), W(12), U(13), Z(14), F(15), G(15)

Note that g(X) becomes 8 after C is expanded, but drops to 7 after D is expanded. Similarly,
g(G) becomes 16 when Z is expanded, but drops to 15 after F is expanded.

Question 4 - Relationships Between Search
Strategies
Prove each of the following statements, or give a counterexample:

(a) Breadth First Search is a special case of Uniform Cost Search
Uniform Cost Search reduces to Breadth First Search when all edges have the same cost.

(b) Breadth First Search, Depth First Search and Uniform Cost Search are special cases of
best-first search.

(c) Best-first search reduces to Breadth-First Search when f(n)=number of edges from start
node to n, to UCS when f(n)=g(n). It can be reduced to DFS by, for example, setting f(n)=-
(number of nodes from start state to n) (thus forcing deep nodes on the current branch to
be searched before shallow nodes on other branches). Another way to produce DFS is to
set f(n)=-g(n) (but this might produce a particularly bad choice of nodes within the DFS
framework - for example, try tracing the order in which nodes are expanded when
traveling from Urziceni to Craiova).

(d) Uniform Cost Search is a special case of A* Search

(e) A* Search reduces to UCS when the heuristic function is zero everywhere, i.e. h(n)=0 for
all n. This heuristic is clearly admissible since it always (grossly!) underestimates the
distance remaining to reach the goal.

Question 5 - Heuristic Path Algorithm
The heuristic path algorithm is a best-first search in which the objective function is

 , where

What kind of search does this perform when w=0? when w=1? when w=2?
This algorithm reduces to Uniform Cost Search when w = 0, to A* Search when w = 1 and to
Greedy Search when w = 2.

For what values of w is this algorithm complete? For what values of w is it optimal, assuming h() is
admissible?

It is guaranteed to be optimal when 0 ≤ w ≤ 1, because it is equivalent to A
*
Search using the

heuristic:

When w > 1 it is not guaranteed to be optimal (however, it might work very well in practice, for
some problems).

f (n) = (2 − w) ⋅ g(n) + w ⋅ h(n) 0 ≤ w ≤ 2

f (n) = (2 − w) ⋅ g(n) + w ⋅ h(n)

