COMP3411/9814: Artificial Intelligence

Propositions and Inference

Lecture Outline

- Knowledge Representation and Logic
- Logical Arguments
- Propositional Logic
 - Syntax
 - Semantics
- Validity, Equivalence, Satisfiability, Entailment

Knowledge Bases

- A knowledge base is a set of sentences in a formal language.
- Declarative approach to building an agent:
 - Tell the system what it needs to know, then it can ask itself what it needs to do
 - Answers should follow from the knowledge based.
- How do you formally specify how to answer questions?

Knowledge Based Agent

The agent must be able to:

- represent states, actions, etc.
- incorporate new percepts
- update internal representations of the world
- deduce hidden properties of the world
- determine appropriate actions

Why Formal Languages (not English, or other natural language)?

- Natural languages are ambiguous: "The fisherman went to the bank" (lexical)
- "The boy saw a girl with a telescope" (structural)
- "The table won't fit through the doorway because it is too [wide/narrow]" (co-reference)
- Ambiguity makes it difficult to interpret meaning of phrases/sentences
 - But also makes inference harder to define and compute
- Symbolic logic is a syntactically unambiguous language

Syntax vs Semantics

Syntax - legal sentences in knowledge representation language (e.g. in the language of arithmetic expressions x < 4)

Semantics - meaning of sentences.

Refers to a sentence's relationship to the "real world" or to some model of the world.

- Semantic properties of sentences include truth and falsity (e.g. x < 4 is true for x = 3 and false when x = 5).
- Semantic properties of names and descriptions include referents.
- The meaning of a sentence is not intrinsic to that sentence.
 - An interpretation is required to determine sentence meanings.
 - Interpretations are agreed amongst a linguistic community.

Propositions

• Propositions are entities (facts or non-facts) that can be true or false

Examples:

- "The sky is blue" the sky is blue (here and now).
- "Socrates is bald" (assumes 'Socrates', 'bald' are well defined)
 "The car is red" (requires 'the car' to be identified)
- "Socrates is bald and the car is red" (complex proposition)
- Use single letters to represent propositions, e.g. *P*: Socrates is bald
- Reasoning is independent of definitions of propositions

Logical Arguments

An argument relates a set of premises to a conclusion

• valid if the conclusion necessarily follows from the premises

All humans have 2 eyes Jane is a human Therefore Jane has 2 eyes

All humans have 4 eyes Jane is a human Therefore Jane has 4 eyes

- Both are (logically) correct valid arguments
- Which statements are true/false? Why?

Logical Arguments

An argument relates a set of premises to a conclusion

• invalid if the conclusion can be false when the premises are all true

All humans have 2 eyes Jane has 2 eyes Therefore Jane is human

No human has 4 eyes Jane has 2 eyes

Therefore Jane is not human

- Both are (logically) incorrect invalid arguments
- Which statements are true/false? Why?

Propositional Logic

- Letters stand for "basic" propositions
- Combine into more complex sentences using operators not, and, or, implies, iff
- Propositional connectives:

٦	negation	$\neg P$	"not P"
Λ	conjunction	$P \land Q$	"P and Q"
V	disjunction	$P \lor Q$	"P or Q"
\rightarrow	implication	$P \rightarrow Q$	"If P then Q"
\leftrightarrow	bi-implication	$P \leftrightarrow Q$	"P if and only if Q"
		-	

From English to Propositional Logic

- "It is not the case that the sky is blue": ¬B (alternatively "the sky is not blue")
- "The sky is blue and the grass is green": $B \wedge G$
- "Either the sky is blue or the grass is green": $B \lor G$
- "If the sky is blue, then the grass is not green": $B \rightarrow \neg G$
- "The sky is blue if and only if the grass is green": $B \leftrightarrow G$
- "If the sky is blue, then if the grass is not green, the plants will not grow":
 B → (¬G → ¬P)

Improving Readability

- $(P \rightarrow (Q \rightarrow (\neg(R))) \text{ vs } P \rightarrow (Q \rightarrow \neg R)$
- Rules for omitting parentheses
 - Omit parentheses where possible
 - Precedence from highest to lowest is: \neg , \land , \lor , \rightarrow , \leftrightarrow
 - All binary operators are left associative $-\operatorname{so} P \rightarrow Q \rightarrow R$ abbreviates $(P \rightarrow Q) \rightarrow R$
- Sometimes parentheses can't be removed:
 - Is $(P \lor Q) \lor R$ (always) the same as $P \lor (Q \lor R)$?
 - Is $(P \rightarrow Q) \rightarrow R$ (always) the same as $P \rightarrow (Q \rightarrow R)$? **NO!**
- <u>https://web.stanford.edu/class/cs103/tools/truth-table-tool/</u>

Ρ	Q	R	$((P \to Q) \to R)$	$(P \to (Q \to R))$
F	F	F	F	т
F	F	Т	т	т
F	Т	F	F	т
F	Т	Т	т	т
Т	F	F	т	т
Т	F	Т	т	т
Т	Т	F	F	F
Т	Т	Т	т	т

Truth Table Semantics

The semantics of the connectives can be given by truth tables

P	Q	٦P	$P \wedge Q$	$P \lor Q$	$P \rightarrow Q$	$P \leftrightarrow Q$
True	True	False	True	True	True	True
True	False	False	False	True	False	False
False	True	True	False	True	True	False
False	False	True	False	False	True	True

- One row for each possible assignment of True/False to variables
- Important: *P* and *Q* are any sentences, including complex sentences

Example – Complex Sentence

R	S	$\neg R$	$R \wedge S$	$\neg R \lor S$	$(R \land S) \rightarrow (\neg R \lor S)$
True	True	False	True	True	True
True	False	False	False	False	True
False	True	True	False	True	True
False	False	True	False	True	True

Thus $(R \land S) \rightarrow (\neg R \lor S)$ is a tautology

https://web.stanford.edu/class/cs103/tools/truth-table-tool/

Definitions

- A sentence is valid if it is True under all possible assignments of True/False to its variables (e.g. $P \lor \neg P$)
- A tautology is a valid sentence
- Two sentences are equivalent if they have the same truth table, e.g. $P \land Q$ and $Q \land P$
 - So P is equivalent to Q if and only if $P \leftrightarrow Q$ is valid
- A sentence is satisfiable if there is some assignment of True/False to its variables for which the sentence is True
- A sentence is unsatisfiable if it is not satisfiable (e.g. $P \land \neg P$)
 - Sentence is False for all assignments of True/False to its variables
 - So P is a tautology if and only if $\neg P$ is unsatisfiable

Material Implication

- $P \rightarrow Q$ evaluates to False only when P is True and Q is False
- $P \rightarrow Q$ is equivalent to $\neg P \lor Q$: material implication
- English usage often suggests a causal connection between antecedent
 (P) and consequent (Q) this is not reflected in the truth table
- All these are tautologies
 - $\blacktriangleright (P \land Q) \to Q$
 - $\blacktriangleright P \to (P \lor Q)$
 - $\blacktriangleright (P \land \neg P) \to Q$

Material Implication

- $P \rightarrow Q$ evaluates to False only when P is True and Q is False
- $P \rightarrow Q$ is equivalent to $\neg P \lor Q$: material implication
- English usage often suggests a causal connection between antecedent
 (P) and consequent (Q) this is not reflected in the truth table
- All these are tautologies

$$(P \land Q) \rightarrow Q = \neg (P \land Q) \lor Q = \neg P \lor \neg Q \lor Q = T$$

$$P \rightarrow (P \lor Q) = \neg P \lor P \lor Q = T$$

$$(P \land \neg P) \rightarrow Q = \neg (P \land \neg P) \lor Q = \neg P \lor P \lor Q = T$$

Logical Equivalences – All Valid

Commutativity:	$p \land q \leftrightarrow q \land p$	$p \lor q \leftrightarrow q \lor p$
Associativity:	$p \land (q \land r) \leftrightarrow (p \land q) \land r$	$p \lor (q \lor r) \leftrightarrow (p \lor q) \lor r$
Distributivity:	$p \land (q \lor r) \leftrightarrow (p \land q) \lor (p \land r)$	$p \lor (q \land r) \leftrightarrow (p \lor q) \land (p \lor r)$
Implication:	$(p \rightarrow q) \leftrightarrow (\neg p \lor q)$	
Idempotent:	$p \land p \nleftrightarrow p$	$p \lor p \leftrightarrow p$
Double negation:	$\neg \neg p \leftrightarrow p$	
Contradiction:	$p \land \neg p \Leftrightarrow FALSE$	
Excluded middle:		$p \lor \neg p \leftrightarrow \text{TRUE}$
De Morgan:	$\neg (p \land q) \leftrightarrow (\neg p \lor \neg q)$	$\neg (p \lor q) \leftrightarrow (\neg p \land \neg q)$

Proof of Equivalence

Let $P \Leftrightarrow Q$ mean "P is equivalent to Q" ($P \Leftrightarrow Q$ is not a formula) Then $P \land (Q \rightarrow R) \Leftrightarrow \neg (P \rightarrow Q) \lor (P \land R)$

$$P \land (Q \rightarrow R) \Leftrightarrow P \land (\neg Q \lor R) \qquad [Implication] \\ \Leftrightarrow (P \land \neg Q) \lor (P \land R) \qquad [Distributivity] \\ \Leftrightarrow (\neg \neg P \land \neg Q) \lor (P \land R) \qquad [Double negation] \\ \Leftrightarrow \neg (\neg P \lor Q) \lor (P \land R) \qquad [De Morgan] \\ \Leftrightarrow \neg (P \rightarrow Q) \lor (P \land R) \qquad [Implication] \end{cases}$$

Assumes substitution: if $A \Leftrightarrow B$, replace A by B in any subformula Assumes equivalence is transitive: if $A \Leftrightarrow B$ and $B \Leftrightarrow C$ then $A \Leftrightarrow C$

Interpretations and Models

- An interpretation is an assignment of values to all variables.
- A model is an interpretation that satisfies the constraints.
 - A model is a possible world in which a sentence (or set of sentences) is true, e.g.
 - x + y = 4 in a world where x = 2 and y = 2
 - May be more than one possible world (e.g. x = 3 and y = 1)
- Often want to know what is true in all models.
- A proposition is statement that is true or false in each interpretation.

Entailment

• Entailment means that one sentence follows logically from another sentence, or set of sentences (i.e. a knowledge base):

$\mathit{KB} \models \alpha$

• Knowledge base *KB* entails sentence α if and only if α is true in all models (possible worlds) where *KB* is true.

e.g. the KB containing "the Moon is full" and "the tide is high" entails "Either the Moon is full or the tide is high".

e.g.
$$x + y = 4$$
 entails $4 = x + y$

• Entailment is a relationship between sentences based on semantics.

Models

• For propositional logic, a model is one row of the truth table

• A model *M* is a model of a sentence α if α is True in *M*

Let $M(\alpha)$ be the set of all models of α

Then $KB \models \alpha$ if and only if $M(KB) \subseteq M(\alpha)$

Entailment

- S entails P (S ⊨ P) if whenever all formulae in S are True, P is True
 Semantic definition concerns truth (not proof)
- Compute whether $S \models P$ by calculating a truth table for S and P
 - Syntactic notion concerns computation/proof
 - Not always this easy to compute (how inefficient is this?)
- A tautology is a special case of entailment where *S* is the empty set
 All rows of the truth table are True

Entailment Example

Р	Q	$P \rightarrow Q$	Q
True	True	True	True
True	False	False	False
False	True	True	True
False	False	True	False

- $\{P, P \rightarrow Q\} \models Q$ since when both P and $P \rightarrow Q$ are True (row 1), Q is also True
- P → Q is calculated from P and Q using the truth table definition,
 and Q is used again to check the entailment

Example – $S \models P$

Each row is an interpretation of *S*. Only the first row is a model of *S*.

$$S = \{\mathbf{p} \to \mathbf{q}, \mathbf{q} \to \mathbf{p}, \mathbf{p} \lor \mathbf{q}\}$$
$$P = \mathbf{p} \land \mathbf{q}$$

p	q	$\mathbf{p} \rightarrow \mathbf{q}$	$\mathbf{q} \rightarrow \mathbf{p}$	$\mathbf{p} \lor \mathbf{q}$	S	$\mathbf{p} \wedge \mathbf{q}$
Τ	Τ	Т	Т	Т	Τ	Т
Τ	F	F	Т	Т	\mathbf{F}	F
F	T	Т	F	Т	\mathbf{F}	F
F	F	Т	Т	F	F	F

Example – $S \models P$

$$S = \{q \lor r, q \to \neg p, \neg (r \land p) \}$$
$$P = \neg p$$

p	q	r	$\mathbf{q} \lor \mathbf{r}$	$\mathbf{q} ightarrow \mathbf{p}$	$ eg(\mathbf{r} \wedge \mathbf{p})$	S	٦p
Т	Τ	Τ	Т	F		F	
Т	Т	F	Т	F		F	
Τ	F	Τ	Т	Т	F	F	
Τ	F	F	F			F	
F	Т	Τ	Т	Т	Т	Τ	Τ
F	Τ	F	Т	Т	Т	Τ	Τ
F	F	Τ	Т	Т	Т	Τ	Τ
F	F	F	F			F	

Example - Modelling Electrical Circuits

Electrical Circuit in Proposition Logic

 $light_{-}l_{1}$.

 $light_{-}l_{2}$.

 $down_{-}s_{1}$.

 $up_{-}s_{2}$.

 $up_{-}s_{3}$.

 $ok_{-}l_{1}$.

 $ok_{-}l_{2}.$

 $ok_{-}cb_{1}$.

 $ok_{-}cb_{2}$.

live_outside.

 $lit_l_1 \leftarrow live_w_0 \land ok_l_1$ $live_w_0 \leftarrow live_w_1 \land up_s_2.$ $live_w_0 \leftarrow live_w_2 \land down_s_2$. $live_w_1 \leftarrow live_w_3 \wedge up_s_1$. $live_w_2 \leftarrow live_w_3 \wedge down_s_1$. $lit_{l_2} \leftarrow live_{w_4} \wedge ok_{l_2}$. *live_w*₄ \leftarrow *live_w*₃ \wedge *up_s*₃. $live_p_1 \leftarrow live_w_3$. $live_w_3 \leftarrow live_w_5 \wedge ok_cb_1$. $live_p_2 \leftarrow live_w_6$. $live_{-}w_{6} \leftarrow live_{-}w_{5} \wedge ok_{-}cb_{2}$. *live_w*₅ \leftarrow *live_outside*.

Conclusion

- Ambiguity of natural languages avoided with formal languages
- Enables formalisation of (truth preserving) entailment
- Propositional Logic: Simplest logic of truth and falsity
- Knowledge Based Systems: First-Order Logic
- Automated Reasoning: How to compute entailment (inference)
- Many many logics not studied in this course