
• Compound terms can contain other compound terms.

• A compound term can contain the same kind of term, i.e. it can be recursive.

tree(tree(empty, jack, empty), fred, tree(empty, jill, empty))

• "empty" is an arbitrary symbol used to represent the empty tree.

• A structure like this could be used to represent a binary tree that looks like:

Recursive Programs

fred

jack jill

empty empty empty empty

Binary Trees
• A binary tree is either empty or it is a structure that contains data and

left and right subtrees which are also trees.

• To test if some datum is in the tree:

in_tree(X, tree(_, X, _)).

in_tree(X, tree(Left, Y, _)) :–

X \= Y,

in_tree(X, Left).

in_tree(X, tree(_, Y, Right)) :–

X \= Y,

in_tree(X, Right).

• The size of the empty tree is 0.

• The size of a non-empty tree is the size of the left subtree

plus the size of the right subtree plus one for the current

node.

The size of a tree

tree_size(empty, 0).

tree_size(tree(Left, _, Right), N) :–

tree_size(Left, LeftSize),

tree_size(Right, RightSize),

N is LeftSize + RightSize + 1.

• A list may be nil or it may be a term that has a head and a
tail. The tail is another list.

• A list of numbers, [1, 2, 3] can be represented as:

list(1, list(2, list(3, nil)))

Lists

nil

• Since lists are used so often, Prolog has a special notation:

[1, 2, 3] = list(1, list(2, list(3, nil)))

1 2 3

Examples of Lists
?- [X, Y, Z] = [1, 2, 3].

X = 1

Y = 2

Z = 3

Unify the two terms on either side of

the equals sign.

Variables match terms in corresponding

positions.

?- [X | Y] = [1, 2, 3].

X = 1

Y = [2, 3]

The head and tail of a list are separated by using '|' to

indicate that the term following the bar should unify

with the tail of the list

?- [X | Y] = [1].

X = 1

Y = []

The empty list is written as '[]'.

The end of a list is usually '[]'.

More list examples
?- [X, Y | Z] = [fred, jim, jill, mary].

X = fred

Y = jim

Z = [jill, mary]

There must be at least two elements in the

list on the right

?- [X | Y] = [[a, f(e)], [n, b, [2]]].

X = [a, f(e)]

Y = [[n, b, [2]]]

The right hand list has two elements:

[a, f(e)] [n, b, [2]]
Y is the tail of the list, [n, b, [2]] is just

one element

Rules about writing recursive programs:

• Only deal with one element at a time.

• Believe that the recursive program you are writing has

already been written and works.

• Write definitions, not programs.

List Membership
member(X, [X | _]).

member(X, [_ | Y]) :–

member(X, Y).

Concatenating Lists

conc([1, 2, 3], [4, 5], [1, 2, 3,4, 5])

Start planning by considering simplest case:

conc([], [1, 2, 3], [1, 2, 3])

Clause for this case:

conc([], X, X).

Concatenating Lists
Next case:

conc([1], [2], [1, 2])

Since conc([], [2], [2])

conc([A | B], C, [A | D]) :– conc(B, C, D).

Entire program is:

conc([], X, X).

conc([A | B], C, [A | D]) :–

conc(B, C, D).

Reversing Lists
rev([1, 2, 3], [3, 2, 1])

Start planning by considering simplest case:

rev([], [])

Note:

rev([2, 3], [3, 2])

and

conc([3, 2], [1], [3, 2, 1])

rev([], []).
rev([A | B], C) :–

rev(B, D),
conc(D, [A], C).

An Application of Lists
Find the total cost of a list of items:

cost(flange, 3).
cost(nut, 1).
cost(widget, 2).
cost(splice, 2).

We want to know the total cost of [flange, nut, widget, splice]

total_cost([], 0).

total_cost([A | B], C) :–

total_cost(B, B_cost),

cost(A, A_cost),

C is A_cost + B_cost.

Reference

• Ivan Bratko, Programming in Prolog for Artificial
Intelligence, 4th Edition, Pearson, 2013.

