Recursive Programs

Compound terms can contain other compound terms.

A compound term can contain the same kind of term, i.e. it can be recursive.

tree(tree(empty, jack, empty), fred, tree(empty, jill, empty))
"empty" is an arbitrary symbol used to represent the empty tree.

A structure like this could be used to represent a binary tree that looks like:

fred

/\

jack jill

TN TN

empty empty empty empty

Binary Trees

® A binary tree is either empty or it is a structure that contains data and
left and right subtrees which are also trees.

® To test if some datum is in the tree:

in_tree(X, tree(_, X,)).
in_tree(X, tree(Left, Y,)) :—
X \=Y,
in_tree(X, Left).
in _tree(X, tree(_, Y, Right)) :—
X \= ¥,
in _tree(X, Right).

The size of a tree

® The size of the empty tree is O.

® The size of a non-empty tree is the size of the left subtree

plus the size of the right subtree plus one for the current
node.

tree_size(empty, O0).
tree_size(tree(Left, _, Right), N) :—
tree_size(Left, LeftSize),
tree_size(Right, RightSize),
N is LeftSize + RightSize + 1.

| 1sts

® A list may be nil or it may be a term that has a head and a
tail. The tail is another list.

® A list of numbers, [1, 2, 3] can be represented as:

list (1, list(2, list(3, nil)))

[

1 2 3

nil

e Since lists are used so often, Prolog has a special notation:

[1, 2, 3] = list(1l, list(2, list(3, nil)))

Examples of Lists

?- [X, ¥, 2] = [1, 2, 3]. Unify the two terms on either side of
X=1 the equals sign.
Y =2 : : :

3 Variables match terms in corresponding
zZ =

positions.

?- [X | Y] = [1, 2, 3]. The head and tail of a list are separated by using '|' to
X=1 indicate that the term following the bar should unify
Y = [2, 3] with the tail of the list
?2- (X | Y] = [1]. The empty list is written as '[]".
X =1

Y =[] The end of a list is usually '[]'.

More list examples

?- [X, Y | 2] = [fred, jim, jill, mary]. There must be at least two elements in the
list on the right

X = fred
Y = jim
Z = [jill, mary]

?- [X | ¥] = [[a, £(e)], [n, b, [2]]]. The right hand list has two elements:

[a, f£(e)] [n, b, [2]]
X = [a, f(e)] Y is the tail of the list, [n, b, [2]] is just

Y = [[n, b, [2]]] one element

List Membership

member (X, [X | _1).
member (X, [_ | Y1) :—

member (X, Y).
Rules about writing recursive programs:

® Only deal with one element at a time.

® Believe that the recursive program you are writing has
already been written and works.

® Write definitions, not programs.

Concatenating Lists

conc([1l, 2, 3], [4, 51, [1, 2, 3,4, 5])
Start planning by considering simplest case:

conc([1, [1, 2, 3], [1, 2, 3])
Clause for this case:

conc([], X, X).

Concatenating Lists

Next case:
conc([1l], [2], [1, 2])
Sinceconc([]1, [2], [2])
conc([A | B], C, [A | D]) :— conc(B, C, D).
Entire program is:
conc([], X, X).

conc([A | B], C, [A | D]) :—
conc(B, C, D).

Reversing Lists

rev([l, 2, 3], [3, 2, 1])

Start planning by considering simplest case:

rev([]l, [1)

rev([], [1)-
rev([A | B], C) :—
rev(B, D),
conc (D, [A], C).

Note:

rev([2, 3], [3, 2])

and

conc([3, 2], [1], [3, 2, 1])

An Application of Lists

Find the total cost of a list of items:

cost(flange, 3).
cost(nut, 1).

cost (widget, 2).
cost(splice, 2).

We want to know the total cost of [flange, nut, widget, splice]

total cost([], O).

total cost([A | B], C) :—
total _cost (B, B_cost),
cost (A, A _cost),

C is A _cost + B _cost.

Reference

e |van Bratko, Programming in Prolog for Artificial
Intelligence, 4th Edition, Pearson, 2013.

