
Solving Problems by Searching 
Informed Search

COMP3411/9814: Artificial Intelligence

Overview

• Heuristics

• Informed Search Methods

• Best-first search

• Greedy best-first search

• A* search

• Iterative Deepening A* Search

Informed (Heuristic) Search
• Informed search strategy

• use problem-specific knowledge

• more efficiently than uninformed search

• Uninformed search algorithms have no information about problem other
than its definition.

• some can solve any solvable problem, none of them can do it efficiently

• Informed search algorithms can do well given guidance on where to look
for solutions.

• Implemented using a priority queue to store frontier nodes

Heuristics

• Heuristics are “rules of thumb” for deciding which alternative is best

• Heuristic must underestimate actual cost to get from current node to goal

• Called an admissible heuristic

• Denoted

• when ever is a goal node

h(n)

h(n) = 0 n

8-Puzzle — number of tiles out of place 

h(n) = 5

Heuristics — Example

Heuristics — Example
8-Puzzle — Manhattan distance (distance tile is out of place)

 

h(n) = 1 + 1 + 0 + 0 + 0 + 1 + 1 + 2 = 6

Heuristics — Example
Another common heuristic is the straight-line distance (“as the crow flies”)
from node to goal

Therefore h(n) = distance from n to g

Uniformed vs Informed Search

• Uninformed - keeps search until it stumbles on goal

• No domain knowledge

• Informed - searches in direction of best guess to goal

• Uses domain knowledge

Heuristic Search
• estimates the cost of shortest path from node, n, to a goal node.

• must be efficient to compute.

• can be extended to paths: .

• must be an underestimate

• i.e. there is no path from to a goal with cost less than .

• An admissible heuristic is a non-negative function that is an underestimate
of the actual cost of a path to a goal.

h(n)

h(n)

h h(⟨n0, ⋯, nk⟩) = h(nk)

h(n)

n h(n)

Example Heuristic Functions

• If nodes are points on a Euclidean plane and cost is distance, 
 can be straight-line distance from to closest goal.

• If nodes are locations and cost is time, 
can use distance to goal divided by maximum speed.

• If goal is to collect a bunch of coins and not run out of fuel, 
cost is an estimate of how many steps to collect rest of the coins, 
refuel when necessary, and return to goal.

• Heuristic function can be found by simplifying calculation of true cost

h(n) n

Search Strategies
General Search algorithm:

• add initial state to queue

• repeat:

• take node from front of queue

• test if it is a goal state; if so, terminate

• “expand” it, i.e. generate successor nodes and add them to the queue

Search strategies are distinguished by the order in which new nodes are
added to the queue of nodes awaiting expansion.

Search Strategies
• BFS and DFS treat all new nodes the same way:

• BFS add all new nodes to the back of the queue

• DFS add all new nodes to the front of the queue

• Best First Search uses an evaluation function to order the nodes in the
queue

• Similar to uniform cost search

• Informed or Heuristic:

• Greedy Search 	 	 	 (estimates cost from node n to goal)

• A* Search 	 (cost from start to n plus estimated cost to goal)

f()

f(n) = h(n)
f(n) = g(n) + h(n)

Delivery Robot Heuristic Function

 = distance from to goal

Heuristic function can be extended to paths by making
heuristic value of path equal to heuristic value of node
at the end of the path: .

h(loc) loc

h(⟨n0, ⋯, nk⟩) = h(nk)

Use straight-line distance as heuristic, and assume
these values:

Greedy Best-First Search

• Always select node closest to goal according to heuristic function

• is estimated cost to goal

• if is a goal state

• Frontier is a priority queue ordered by h.

• “Greedy” algorithm takes “best” node first.

• Like depth-first search, except pick next node by

h(n)
h(n) = 0 n

h(n)

 Greedy Best-first Search Example

• Graph drawn to scale – cost of arc is its length

• Aim is to find shortest path from s to g.

 Greedy Best-first Search Example

Straight-line distance to goal g is used as heuristic function.

 Greedy Best-first Search Example

• Greedy depth-first search selects closest node to s and never terminates

• All nodes below s look good. Greedy best-first search cycles between them, never trying alternate route.

 is number of tiles out of placeh

Examples of Greedy
Best-First Search

Examples of Greedy Best-First Search 94 Chapter 3. Solving Problems by Searching

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Sibiu Bucharest

329 374

366 380 193

253 0

Rimnicu Vilcea

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

329

Zerind

374

366 176 380 193

Zerind

Arad

Sibiu Timisoara

253 329 374

Arad

366

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

(d) After expanding Fagaras

Figure 3.23 Stages in a greedy best-first tree search for Bucharest with the straight-line
distance heuristic hSLD . Nodes are labeled with their h-values.

Conditionsfor optimality: Admissibility and consistency

The first condition we require for optimality is that h(n) be an admissible heuristic. AnADMISSIBLE
HEURISTIC

admissible heuristic is one that never overestimates the cost to reach the goal. Because g(n)
is the actual cost to reach n along the current path, and f (n) =g(n) +h(n), we have as an
immediate consequence that f (n) never overestimates the true cost of a solution along the
current path through n.

Admissible heuristics are by nature optimistic because they think the cost of solving
the problem is less than it actually is. An obvious example of an admissible heuristic is the
straight-line distance hSLD that we used in getting to Bucharest. Straight-line distance is
admissible because the shortest path between any two points is a straight line, so the straight

• Stages in a greedy best-first tree search for route from
Arad to Bucharest with the straight-line distance
heuristic.

• Note that straight-line distances are less than actual
distances in map.

Bucharest

Giurgiu

Urziceni

Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj
Mehadia

Dobreta
Craiova

Sibiu

Fagaras

Pitesti
Rimnicu Vilcea

Vaslui

Iasi

Straight−line distance
to Bucharest

 0
160
242
161

77
151

241

366

193

178

253
329

80
199

244

380

226

234

374

98

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75
120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Properties of Greedy Best-First Search

Complete:	 No. Can get stuck in loops. 
(Complete in finite space with repeated-state checking)

Time:	 , where m is the maximum depth in search space.

Space:	 (retains all nodes in memory)

Optimal:	 No.

• Greedy Search has the same deficits as Depth-First Search.

• However, a good heuristic can reduce time and memory costs substantially.

O(bm)

O(bm)

A* Search

• Use both cost of path generated and estimate to goal to order nodes on
the frontier

• = cost of path from start to

• = estimate from to goal

• Order priority queue using function

• is the estimated cost of the cheapest solution extending this path

g(n) n

h(n) n

f(n) = g(n) + h(n)

f(n)

A* Search

• Combines uniform-cost search and greedy search

• Greedy Search minimises

• efficient but not optimal or complete

• Uniform Cost Search minimises

• optimal and complete but not efficient

h(n)

g(n)

Heuristic Function

Heuristic estimate = cost of the cheapest path

from s to t via n:
f(n)

f(n) = g(n) + h(n)

g(n) is the cost the path from s to n

h(n) is an estimate of the cost of an optimal path
from n to t.

A* Search

• S = start

• G = Goal

• n = current node

• g(n) = actual cost from S to n

• h(n) = estimated distance from n to G

A* Search

Delivery Robot Heuristic Function
Use straight-line distance as heuristic, and assume
these values:

A* Search - The Delivery Robot
1. [o10321]	

2. [b321, ts31, o10936]	

3. [b121, b429, ts31, o10936]

4. [c221, b229, b429, ts31, o10936]

5. [c121, b229, b429, c329 , ts31, o10936]

6. [b229, b429, c329, ts31, c335, o10936]

7. [b429, ts31, c335, o10936]

8. [ts31, c335, b435, o10936, o10942]

…..

h(o103) = 21

f(⟨o103,b3⟩) = g(⟨o103,b3⟩) + h(b3) = 4 + 17 = 21

• Lowest-cost path is
eventually found.

• Forced to try many
different paths,
because some
temporarily seem to
have the lowest cost.

• Still does better than
lowest-cost-first
search and greedy
best-first search.

Optimality of A*
• Heuristic is said to be admissible if

	 where is the true cost from to goal

• If is admissible then never overestimates the actual cost of the best solution through .

• , where is the actual cost to and is an underestimate

• Example: = straight line distance is admissible because the shortest path between any two
points is a line.

• is optimal if is admissible.

• Admissible heuristics are by nature optimistic because they think the cost of solving the
problem is less than it actually is.

h

∀n h(n) ≤ h*(n) h*(n) n

h f(n) n

f(n) = g(n) + h(n) g(n) n h(n)

h

A* h

Suppose a sub-optimal goal node has been generated and is in the queue. Let
be the last unexpanded node on a shortest path to an optimal goal node .

	 	 	 	 	 	 	 	 	 	

Hence , and A* will never select for expansion because queue is
always ordered, e.g. .

G2 n
G

f(G2) = g(G2) since h(G2) = 0
= g(G) since G2 is sub-optimal
≥ f(n) since h is admissible

f(G2) > f(n) G2

[⋯, n, ⋯, G2]

Optimality of A* Search
COMP9414/9814/3411 18s1 Informed Search 24

Optimality of A∗ Search

Suppose a suboptimal goal node G2 has been generated and is in the
queue. Let n be the last unexpanded node on a shortest path to an optimal
goal node G.

G

n

G2

Start

f (G2) = g(G2) since h(G2) = 0

> g(G) since G2 is suboptimal

≥ f (n) since h is admissible.

UNSW c©Alan Blair, 2013-18

Consistent Heuristics

If is an underestimate of the actual cost, , and , can never
decrease as search heads towards the goal

h(n) h(n) f(n)

S G
f(s) = g(s) + h(s) = 0 + h(s) = h(s)

GS n1

f(n1) = g(n1) + h(n1) ≥ f(s)

GS n1

f(n2) = g(n2) + h(n2) ≥ f(n1)
n2

GS
f(G) = g(G) + h(G) = g(G) + 0 = actual cost

….

Consistent Heuristics
• A heuristic is consistent if is nondecreasing along any path

• I.e. for every node , every successor of generated by any action ,

 If is consistent, we have

f(n)

n n′￼ n a

h(n) ≤ c(n, a, n′￼) + h(n′￼)

h

f(n′￼) = g(n′￼) + h(n′￼)
= g(n) + c(n, a, n′￼) + h(n′￼)
≥ g(n) + h(n)
= f(n)

Optimality of A* Search

Complete:	 Yes, unless infinitely many nodes with

Time:	 Exponential in

Space:	 Keeps all nodes is memory

Optimal:	 Yes (assuming is admissible).

f ≤ cost of solution

relative error in h × length of solution

h

Iterative Deepening A* Search

• Iterative Deepening A* is a low-memory variant of A* that performs a
series of depth-first searches but cuts off each search when the exceeds
current threshold, initially .

• The threshold is increased with each successive search.

f
f(start)

Examples of Admissible Heuristics
 = total number of misplaced tiles

 = total Manhattan distance = distance from goal position

h1(n)

h2(n) ∑

h1(Start) = 6
h2(Start) = 4 + 0 + 3 + 3 + 1 + 0 + 2 + 1 = 14

How to Find Heuristic Functions ?

• Admissible heuristics can often be derived from the exact solution cost of
a simplified or “relaxed” version of the problem. (i.e. with some of the
constraints weakened or removed)

• If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then
 gives the shortest solution.

• If the rules are relaxed so that a tile can move to any adjacent square, then
 gives the shortest solution.

h1(n)

h2(n)

Dominance
• if for all (both admissible)

• dominates and is better for search.

• Try make the heuristic as large as possible, without exceeding .

• typical search costs:

h2(n) ≥ h1(n) n

h2 h1

h h*

COMP9414/9814/3411 18s1 Informed Search 31

Dominance

! if h2(n)≥ h1(n) for all n (both admissible) then h2 dominates h1 and
is better for search. So the aim is to make the heuristic h() as large as
possible, but without exceeding h∗().

! typical search costs:

14-puzzle IDS = 3,473,941 nodes

A∗(h1) = 539 nodes

A∗(h2) = 113 nodes

24-puzzle IDS ≈ 54×109 nodes

A∗(h1) = 39,135 nodes

A∗(h2) = 1,641 nodes

UNSW c©Alan Blair, 2013-18

Summary of Informed Search

• Heuristics can be applied to reduce search cost.

• Greedy Search tries to minimise cost from current node n to the goal.

• A* combines the advantages of Uniform-Cost Search and Greedy Search

• A* is complete, optimal and optimally efficient among all optimal search
algorithms.

• Memory usage is still a concern for A*. IDA* is a low-memory variant.

Summary

• Informed search makes use of problem-specific knowledge to guide
progress of search

• This can lead to a significant improvement in performance

• Much research has gone into admissible heuristics

• Even on the automatic generation of admissible heuristics

