COMP3411: Artificial Intelligence

Automated Reasoning

C. Sammut & W. Wobcke

This Lecture

- **Proof systems**
	- Soundness, completeness, decidability
- **Resolution and Refutation**
- Horn clauses and SLD resolution
- ! Prolog

Summary So Far

- **Propositional Logic**
	- Syntax: Formal language built from \wedge , \vee , \neg , \rightarrow
	- \triangleright Semantics: Definition of truth table for every formula
	- ► *S* **⊧** *P* if whenever all formulae in *S* are True, *P* is True
- **Proof System**
	- \triangleright System of axioms and rules for deduction
	- ► Enables computation of proofs of *P* from *S*
- **Basic Questions**
	- \triangleright Are the proofs that are computed always correct? (soundness)
	- ► If $S \models P$, is there always a proof of *P* from *S* (completeness)

Mechanising Proof

- ! A proof of a formula *P* from a set of premises *S* is a sequence of lines in which any line in the proof is
	- 1. An axiom of logic or premise from *S*, or
- 2. A formula deduced from previous lines of the proof using a rule of inference and the last line of the proof is the formula *P*
- ! Formally captures the notion of mathematical proof
- **•** *S* proves $P(S \vdash P)$ if there is a proof of *P* from *S*; alternatively, *P* follows from *S*
- **Example: Resolution proof**

Soundness and Completeness

- ! A proof system is sound if (intuitively) it preserves truth
	- \triangleright Whenever $S \vdash P$, if every formula in *S* is True, *P* is also True
	- \triangleright Whenever *S* ⊢ *P*, *S* ⊧ *P*
	- \blacktriangleright If you start with true assumptions, any conclusions must be true
- ! A proof system is complete if it is capable of proving all consequences of any set of premises (including infinite sets)
	- \blacktriangleright Whenever *P* is entailed by *S*, there is a proof of *P* from *S*
	- ► Whenever $S \models P, S \vdash P$
- ! A proof system is decidable if there is a mechanical procedure (computer program) which when asked whether $S \vdash P$, can always answer 'true' – or 'false' – correctly

Resolution

- ! A common type of proof system based on refutation
- **EXECUTE:** Better suited to computer implementation than systems of axioms and rules (can give correct 'false' answers)
- **Decidable in the case of Propositional Logic**
- ! Generalises to First-Order Logic (see next set of lectures)
- ! Needs all formulae to be converted to clausal form

Normal Forms

- A literal ℓ is a propositional variable or the negation of a propositional variable (*P* or $\neg P$)
- **E** A clause is a disjunction of literals $\ell_1 \vee \ell_2 \vee \cdots \vee \ell_n$
- ! Conjunctive Normal Form (CNF) a conjunction of clauses, e.g.

 $(P \lor Q \lor \neg R) \land (\neg S \lor \neg R)$ – or just one clause, e.g. *P* \lor *Q*

- Disjunctive Normal Form (DNF) a disjunction of conjunctions of literals, e.g. $(P \land Q \land \neg R) \lor (\neg S \land \neg R)$ – or just one conjunction, e.g. *P* \land *Q*.
- ! Every Propositional Logic formula can be converted to CNF and DNF
- ! Every Propositional Logic formula is equivalent to its CNF and DNF

Conversion to Conjunctive Normal Form

- Eliminate \leftrightarrow rewriting $P \leftrightarrow Q$ as $(P \rightarrow Q) \land (Q \rightarrow P)$
- Eliminate \rightarrow rewriting $P \rightarrow Q$ as $\neg P \vee Q$
- Use De Morgan's laws to push \neg inwards (repeatedly)
	- \blacktriangleright Rewrite $\neg (P \land Q)$ as $\neg P \lor \neg Q$
	- \blacktriangleright Rewrite $\neg (P \lor O)$ as $\neg P \land \neg O$
- **Eliminate double negations: rewrite** $\neg \neg P$ **as** *P*
- **Use the distributive laws to get CNF** [or DNF] if necessary
	- Rewrite $(P \wedge Q) \vee R$ as $(P \vee R) \wedge (Q \vee R)$ [for CNF]
	- Rewrite $(P \vee Q) \wedge R$ as $(P \wedge R) \vee (Q \wedge R)$ [for DNF]

Example Clausal Form

Clausal Form = set of clauses in the CNF

- \blacksquare $\neg (P \rightarrow (Q \land R))$
- \blacksquare $\neg(\neg P \lor (Q \land R))$
- \blacksquare $\neg \neg P \land \neg (Q \land R)$
- \blacksquare $\neg \neg P \land (\neg Q \lor \neg R)$
- \blacksquare $PA(\neg Q \lor \neg R)$
- \blacksquare Clausal Form: $\{P, \neg Q \lor \neg R\}$

Resolution Rule of Inference

where *B* is a propositional variable and A_i and C_j are literals

- *B* and $\neg B$ are complementary literals
- \blacksquare *A*₁ $\vee \cdots \vee A_m \vee C_1 \vee \cdots \vee C_n$ is the resolvent of the two clauses
- **E** Special case: If no A_i and C_j , resolvent is empty clause, denoted \Box or \bot

Resolution Rule

- **D** Consider $A_1 \vee \cdots \vee A_m \vee B$ and $\neg B \vee C_1 \vee \cdots \vee C_n$
	- \blacktriangleright Suppose both are True
	- If *B* is True, $\neg B$ is False so $C_1 \vee \cdots \vee C_n$ must be True
	- If *B* is False, $A_1 \vee \cdots \vee A_m$ must be True
	- \blacktriangleright Hence $A_1 \vee \cdots \vee A_m \vee C_1 \vee \cdots \vee C_n$ is True

Hence the resolution rule is sound

! Starting with true premises, any conclusion made using resolution must be true

Applying Resolution: Naive Method

- ! Convert knowledge base into clausal form
- ! Repeatedly apply resolution rule to the resulting clauses
- ! *P* follows from the knowledge base if and only if each clause in the CNF of *P* can be derived using resolution from the clauses of the knowledge base (or subsumption)
- **Example**
	- $\rightarrow \{P \rightarrow Q, Q \rightarrow R\} \vdash P \rightarrow R$
	- \blacktriangleright Clauses $\neg P \lor Q$, $\neg Q \lor R$, show $\neg P \lor R$
	- \blacktriangleright Follows from one resolution step (*Q* and $\neg Q$ cancel, leaving $\neg P \vee R$)

Refutation Systems

- To show that *P* follows from *S* (i.e. $S \vdash P$) using refutation, start with S and $\neg P$ in clausal form and derive a contradiction using resolution
- ! A contradiction is the "empty clause" (a clause with no literals)
- The empty clause \Box is unsatisfiable (always False)
- So if the empty clause \Box is derived using resolution, the original set of clauses is unsatisfiable (never all True together)
- That is, if we can derive \Box from the clausal forms of *S* and $\neg P$, these clauses can never be all True together
- ! Hence whenever the clauses of *S* are all True, at least one clause from %*P* must be False, i.e. %*P* must be False and *P* must be True
- By definition, $S \models P$ (so P can correctly be concluded from S)

Applying Resolution Refutation

- ! Negate query to be proven (resolution is a refutation system)
- ! Convert knowledge base and negated query into CNF
- ! Repeatedly apply resolution until either the empty clause (contradiction) is derived or no more clauses can be derived
- ! If the empty clause is derived, answer 'true' (query follows from knowledge base), otherwise answer 'false' (query does not follow from knowledge base)

Resolution: Example 1

 $(G \vee H)$ → $(\neg J \wedge \neg K), G \vdash \neg J$

Clausal form of is $\{\neg G \lor \neg J, \neg H \lor \neg J, \neg G \lor \neg K, \neg H \lor \neg K\}$

Resolution: Example 2

$$
P \to \neg Q, \neg Q \to R \vdash P \to R
$$

Recall $P \to R \Leftrightarrow \neg P \lor R$
Clausal form of $\neg (\neg P \lor R)$ is $\{P, \neg R\}$

Resolution: Example 3

Clausal form of $\vdash ((P \lor Q) \land \neg P) \rightarrow Q$ is $\{P \lor Q, \neg P, \neg Q\}$ ⊢ ((*P* ∨ *Q*) ∧ ¬*P*) → *Q*

Rewriting negated query in CNF: Now write in clausal form: ¬[((*P* ∨ *Q*) ∧ ¬*P*) → *Q*] ¬[¬((*P* ∨ *Q*) ∧ ¬*P*) ∨ *Q*] ¬¬((*P* ∨ *Q*) ∧ ¬*P*) ∧ ¬*Q* (*P* ∨ *Q*) ∧ ¬*P* ∧ ¬*Q*

{*P* ∨ *Q*, ¬*P*, ¬*Q*}

Soundness and Completeness Again

For Propositional Logic

- ! Resolution refutation is sound, i.e. it preserves truth (if a set of premises are all true, any conclusion drawn from those premises must also be true)
- ! Resolution refutation is complete, i.e. it is capable of proving all consequences of any knowledge base (not shown here!)
- ! Resolution refutation is decidable, i.e. there is an algorithm implementing resolution which when asked whether $S \vdash P$, can always answer 'true' or 'false' (correctly)

Heuristics in Applying Resolution

- ! Clause elimination can disregard certain types of clauses
	- Pure clauses: contain literal *L* where $\neg L$ doesn't appear elsewhere
	- \blacktriangleright Tautologies: clauses containing both *L* and $\neg L$
	- \triangleright Subsumed clauses: another clause is a subset of the literals
- **Ordering strategies**
	- Resolve unit clauses (only one literal) first
	- \triangleright Start with query clauses
	- \blacktriangleright Aim to shorten clauses

Horn Clauses

Using a less expressive language makes proof procedure easier.

- **Review**
	- \blacktriangleright literal proposition variable or negation of proposition variable
	- \triangleright clause disjunction of literals
- **Definite Clause exactly one positive literal**
	- \blacktriangleright e.g. $B \vee \neg A_1 \vee \dots \vee \neg A_n$, i.e. $B \leftarrow A_1 \wedge \dots \wedge A_n$
- \blacksquare Negative Clause no positive literals
	- e.g. $\neg Q_1 \vee \neg Q_2$ (negation of a query)
- ! Horn Clause clause with at most one positive literal

Prolog

- **In Horn clauses in First-Order Logic**
- **SLD** resolution
- **Depth-first search strategy with backtracking**
- **User control**
	- Ordering of clauses in Prolog database (facts and rules)
	- \triangleright Ordering of subgoals in body of a rule
- **Prolog is a programming language based on resolution refutation relying on the** programmer to exploit search control rules

Prolog Clauses

$P := Q, R, S.$	Queries:
$P \leftarrow Q \land R \land S.$?-Q, R, S
$P \lor \neg(Q \land R \land S)$	$\bot \leftarrow Q \land R \land S$
$P \lor \neg Q \lor \neg R \lor \neg S$	$\neg(Q \land R \land S)$
$\neg Q \lor \neg R \lor \neg S$	$\neg Q \lor \neg R \lor \neg S$

Prolog DB = set of clauses

$$
P \rightarrow Q \equiv \neg P \lor Q
$$

$$
P \leftarrow Q \equiv P \lor \neg Q
$$

$$
\perp \equiv \text{false (i.e. a contradiction)}
$$

SLD Resolution – \vdash **SLD**

- ! **S**elected literals **L**inear form **D**efinite clauses resolution
- ! SLD refutation of a clause *C* from a set of clauses *KB* is a sequence
	- 1. First clause of sequence is *C*
- 2. Each intermediate clause *Ci* is derived by resolving the previous clause C_{i-1} and a clause from KB
- 3. The last clause in the sequence is \Box
- For a definite *KB* and negative clause query *Q*: $KB \cup Q \vdash \Box$ if and only if $KB \cup Q \vdash_{SLD} \Box$

Prolog Example

Example Execution of Prolog interpreter

- In each step, we remove the first element in the goal set and replace it with the body of the clause whose head matches that element. E.g. remove *p* and replace by *q*, *r*, *s*.
- **Note**: The simple Prolog interpreter isn't smart enough to remove the duplication of *r* in step 2.

Prolog Interpreter

Inefficient and not how a real Prolog interpreter works Input: A query *Q* and a logic program *KB* Output: 'true' if *Q* follows from *KB*, 'false' otherwise Initialise current goal set to $\{Q\}$ **while** the current goal set is not empty do Choose *G* from the current goal set; (first in goal set) Make a copy $G' := B_1, \ldots, B_n$ of a clause from KB (try all in KB) (if no such rule, try alternative rules) Replace G by B_1, \ldots, B_n in current goal set **if** current goal set is empty: output 'true' **else** output 'false'

Depth-first, left-right with backtracking

Conclusion: Propositional Logic

- Propositions built from \wedge , \vee , \neg , \rightarrow
- ! Sound, complete and decidable proof systems (inference procedures)
	- \blacktriangleright Natural deduction
	- \blacktriangleright Resolution refutation
	- \blacktriangleright Prolog for special case of definite clauses
	- \blacktriangleright Tableau method
- **I** Limited expressive power
	- \triangleright Cannot express ontologies (no relations)
- **First-Order Logic can express knowledge about objects, properties and** relationships between objects