
COMP3411: Artificial Intelligence

Automated Reasoning

C. Sammut & W. Wobcke

This Lecture

! Proof systems

" Soundness, completeness, decidability

! Resolution and Refutation

! Horn clauses and SLD resolution

! Prolog

Summary So Far

! Propositional Logic

" Syntax: Formal language built from #, $, %, &

" Semantics: Definition of truth table for every formula

" if whenever all formulae in S are True, P is True

! Proof System

" System of axioms and rules for deduction

" Enables computation of proofs of P from S

! Basic Questions

" Are the proofs that are computed always correct? (soundness)

" If , is there always a proof of P from S (completeness)

S ⊧ P

S ⊧ P

Mechanising Proof

! A proof of a formula P from a set of premises S is a sequence of lines in which any line
in the proof is

1. An axiom of logic or premise from S, or

2. A formula deduced from previous lines of the proof using a rule of inference and

the last line of the proof is the formula P

! Formally captures the notion of mathematical proof

! S proves P (S ('P) if there is a proof of P from S; alternatively, P follows from S

! Example: Resolution proof

Soundness and Completeness

! A proof system is sound if (intuitively) it preserves truth

" Whenever S ('P, if every formula in S is True, P is also True

" Whenever S ('P,

" If you start with true assumptions, any conclusions must be true

! A proof system is complete if it is capable of proving all consequences of any set of

premises (including infinite sets)

" Whenever P is entailed by S, there is a proof of P from S

" Whenever , S ('P

! A proof system is decidable if there is a mechanical procedure (computer program)

which when asked whether S ('P, can always answer ‘true’ – or ‘false’ – correctly

S ⊧ P

S ⊧ P

Resolution

! A common type of proof system based on refutation

! Better suited to computer implementation than systems of axioms and rules
(can give correct ‘false’ answers)

! Decidable in the case of Propositional Logic

! Generalises to First-Order Logic (see next set of lectures)

! Needs all formulae to be converted to clausal form

Normal Forms

! A literal ℓ is a propositional variable or the negation of a propositional variable (P or %P)

! A clause is a disjunction of literals ℓ1 $ ℓ 2 $))) '$ ℓ n

! Conjunctive Normal Form (CNF) — a conjunction of clauses, e.g.

(P $'Q $%R) # (%S $%R) – or just one clause, e.g. P $'Q

! Disjunctive Normal Form (DNF) — a disjunction of conjunctions of literals, e.g.

(P #'Q #%R) $ (%S #%R) – or just one conjunction, e.g. P #'Q

! Every Propositional Logic formula can be converted to CNF and DNF

! Every Propositional Logic formula is equivalent to its CNF and DNF

Conversion to Conjunctive Normal Form

! Eliminate * 'rewriting P * 'Q as (P & 'Q) # (Q & 'P)

! Eliminate & 'rewriting P & 'Q as %P $'Q

! Use De Morgan’s laws to push %' inwards (repeatedly)

" Rewrite %(P #'Q) as %P $%Q

" Rewrite %(P $'Q) as %P #%Q

! Eliminate double negations: rewrite %%P as P

! Use the distributive laws to get CNF [or DNF] – if necessary

" Rewrite (P #'Q) $'R as (P $'R) # (Q $'R) [for CNF]

" Rewrite (P $'Q) #'R as (P #'R) $ (Q #'R) [for DNF]

Example Clausal Form

Clausal Form = set of clauses in the CNF

! %(P & '(Q #'R))

! %(%P $ (Q #'R))

! %%P #% (Q #'R)

! %%P # (%Q $%R)

! P # (%Q $%R)

! Clausal Form: +P, %Q $%R ,

A1 $))) '$ 'Am $'B

Resolution Rule of Inference

%B $C1 $))) '$Cn

A1 $))) '$ 'Am $C1 $))) '$Cn

where B is a propositional variable and Ai and Cj are literals

! B and %B are complementary literals

! A1 $))) '$ 'Am $C1 $))) '$Cn is the resolvent of the two clauses

! Special case: If no Ai and Cj , resolvent is empty clause, denoted ◻︎or ⊥

Resolution Rule

! Consider A1 $))) '$ 'Am $'B and %B $C1 $))) '$Cn

" Suppose both are True

" If B is True, %B is False so C1 $))) '$Cn must be True

" If B is False, A1 $))) '$ 'Am must be True

" Hence A1 $))) '$ 'Am $C1 $))) '$Cn is True

Hence the resolution rule is sound

! Starting with true premises, any conclusion made using resolution must be true

Applying Resolution: Naive Method

! Convert knowledge base into clausal form

! Repeatedly apply resolution rule to the resulting clauses

! P follows from the knowledge base if and only if each clause in the CNF of P can be
derived using resolution from the clauses of the knowledge base (or subsumption)

! Example

" +P & 'Q, Q & 'R,'('P & 'R

" Clauses %P $'Q, %Q $'R, show %P $'R

" Follows from one resolution step (Q and %Q cancel, leaving %P $'R)

Refutation Systems

! To show that P follows from S (i.e. S ('P) using refutation, start with S and %P in clausal
form and derive a contradiction using resolution

! A contradiction is the “empty clause” (a clause with no literals)

! The empty clause ☐'is unsatisfiable (always False)

! So if the empty clause -'is derived using resolution, the original set of clauses is
unsatisfiable (never all True together)

! That is, if we can derive -'from the clausal forms of S and %P, these clauses can never
be all True together

! Hence whenever the clauses of S are all True, at least one clause from

%P must be False, i.e. %P must be False and P must be True

! By definition, (so P can correctly be concluded from S)S ⊧ P

Applying Resolution Refutation

! Negate query to be proven (resolution is a refutation system)

! Convert knowledge base and negated query into CNF

! Repeatedly apply resolution until either the empty clause (contradiction) is
derived or no more clauses can be derived

! If the empty clause is derived, answer ‘true’ (query follows from knowledge
base), otherwise answer ‘false’ (query does not follow from knowledge base)

Resolution: Example 1

Clausal form of is

1. 	 [Premise]

2. 	 [Premise]

3. 	 [Premise]

4. 	 [Premise]

5. 	 [Premise]

6. 	 [Query]

7. 	 [1, 6 Resolution]

8. 	 [5, 7 Resolution]

(G ∨ H) → (¬J ∧ ¬K), G ⊢ ¬J

{¬G ∨ ¬J, ¬H ∨ ¬J, ¬G ∨ ¬K, ¬H ∨ ¬K}

¬G ∨ ¬J

¬H ∨ ¬J

¬G ∨ ¬K

¬H ∨ ¬K

G

J ¬

¬G

□

Resolution: Example 2

Recall

Clausal form of is

1. 	 [Premise]

2. 	 [Premise]

3. 	 [Query]

4. 	 [Query]

5. 	 [1, 3 Resolution]

6. 	 [2, 5 Resolution

7. 	 [4, 6 Resolution]

P → ¬Q, ¬Q → R ⊢ P → R
P → R ⇔ ¬P ∨ R

¬(¬P ∨ R) {P, ¬R}

¬P ∨ ¬Q

Q ∨ R

P ¬

¬R ¬

¬Q

R

□

Resolution: Example 3

Clausal form of is

1. 	 [Query]

2. 	 [Query]

3. 	 [Query]

4. 	 [1, 2 Resolution

5. 	 [3, 4 Resolution]

⊢ ((P ∨ Q) ∧ ¬P) → Q
⊢ ((P ∨ Q) ∧ ¬P) → Q {P ∨ Q, ¬P, ¬Q}

P ∨ Q ¬

¬P ¬

¬Q ¬

Q

□

Rewriting negated query in CNF:

Now write in clausal form:

¬[((P ∨ Q) ∧ ¬P) → Q]

¬[¬((P ∨ Q) ∧ ¬P) ∨ Q]

¬¬((P ∨ Q) ∧ ¬P) ∧ ¬Q

(P ∨ Q) ∧ ¬P ∧ ¬Q

{P ∨ Q, ¬P, ¬Q}

Soundness and Completeness Again

For Propositional Logic

! Resolution refutation is sound, i.e. it preserves truth (if a set of premises are all true,

any conclusion drawn from those premises must also be true)

! Resolution refutation is complete, i.e. it is capable of proving all consequences of
any knowledge base (not shown here!)

! Resolution refutation is decidable, i.e. there is an algorithm implementing
resolution which when asked whether S ('P, can always answer ‘true’ or
‘false’ (correctly)

Heuristics in Applying Resolution

! Clause elimination — can disregard certain types of clauses

" Pure clauses: contain literal L where %L doesn’t appear elsewhere

" Tautologies: clauses containing both L and %L

" Subsumed clauses: another clause is a subset of the literals

! Ordering strategies

" Resolve unit clauses (only one literal) first

" Start with query clauses

" Aim to shorten clauses

Horn Clauses

Using a less expressive language makes proof procedure easier.

! Review

" literal – proposition variable or negation of proposition variable

" clause – disjunction of literals

! Definite Clause – exactly one positive literal

" e.g. B $%A1 $. . . $%An, i.e. B . 'A1 # . . . #'An

! Negative Clause – no positive literals

" e.g. %Q1 $%Q2 (negation of a query)

! Horn Clause – clause with at most one positive literal

Prolog

! Horn clauses in First-Order Logic

! SLD resolution

! Depth-first search strategy with backtracking

! User control

" Ordering of clauses in Prolog database (facts and rules)

" Ordering of subgoals in body of a rule

! Prolog is a programming language based on resolution refutation relying on the
programmer to exploit search control rules

Prolog Clauses

P :– Q, R, S.

P ← Q ∧ R ∧ S .

P ∨ ¬(Q∧ R ∧ S)

P ∨ ¬Q ∨ ¬R ∨ ¬S

Prolog DB = set of clauses

Queries:

?- Q, R, S

¬(Q∧ R ∧ S)

¬Q ∨ ¬R ∨ ¬S

⊥ ← Q ∧ R ∧ S

false (i.e. a contradiction)

P → Q ≡ ¬P ∨ Q

P ← Q ≡ P ∨ ¬Q

⊥ ≡

SLD Resolution – (SLD

! Selected literals Linear form Definite clauses resolution

! SLD refutation of a clause C from a set of clauses KB is a sequence

1. First clause of sequence is C

2. Each intermediate clause Ci is derived by resolving the previous

clause Ci/1 and a clause from KB

3. The last clause in the sequence is -

! For a definite KB and negative clause query Q: KB 0'Q ('-'1
if and only if KB 0'Q (SLD -

KB

C1

C2

☐

C

Prolog Example

r.	 % facts

u.

v.

q :- r, u.	 % rules

s :- v.

p :- q, r, s.

?- p.	 % query

true

Example Execution of Prolog interpreter

Initial goal set = {p}

1. {q, r, s}	 because p :- q, r, s.

2. {r, u, r, s}	 because q :- r, u.

3. {u, r, s}	 because r.

4. {r, s}	 because u.

5. {s} 	 because r.

6. {v} 	 because s :- v

7. {} 	 because v.

8. => true	 because empty clause

r.

u.

v.

q :- r, u.

s :- v.

p :- q, r, s.

?- p.

• In each step, we remove the first element in the goal set and replace it with the body of the
clause whose head matches that element. E.g. remove p and replace by q, r, s.

• Note: The simple Prolog interpreter isn’t smart enough to remove the duplication of r in step 2.

Inefficient	and	not	how	a	
real	Prolog	interpreter	works

Prolog Interpreter

Input: A query Q and a logic program KB

Output: ‘true’ if Q follows from KB, ‘false’ otherwise

	 Initialise current goal set to +Q ,

	 while the current goal set is not empty do

	 	 Choose G from the current goal set; (first in goal set)

	 	 Make a copy G2':- B1,..., Bn of a clause from KB

	 	 (try all in KB) (if no such rule, try alternative rules)

	 	 Replace G by B1,..., Bn in current goal set

	 	 if current goal set is empty:

	 	 	 output ‘true’

	 	 else output ‘false’

! Depth-first, left-right with backtracking

Conclusion: Propositional Logic

! Propositions built from #, $, %, &

! Sound, complete and decidable proof systems (inference procedures)

" Natural deduction

" Resolution refutation

" Prolog for special case of definite clauses

" Tableau method

! Limited expressive power

" Cannot express ontologies (no relations)

! First-Order Logic can express knowledge about objects, properties and

relationships between objects

