COMP3411: Artificial Intelligence

Automated Reasoning

C. Sammut & W. Wobcke

This Lecture

Proof systems

Soundness, completeness, decidability
Resolution and Refutation
Horn clauses and SLD resolution

Prolog

Summary So Far

Propositional Logic
Syntax: Formal language built from A, Vv, 7, —

Semantics: Definition of truth table for every formula

S E P if whenever all formulae in S are True, P 1s True

Proof System
System of axioms and rules for deduction

Enables computation of proofs of P from §

Basic Questions
Are the proofs that are computed always correct? (soundness)

If S E P, is there always a proof of P from S (completeness)

Mechanising Proof

A proof of a formula P from a set of premises S 1s a sequence of lines in which any line
in the proof 1s

1. An axiom of logic or premise from S, or
2. A formula deduced from previous lines of the proof using a rule of inference and
the last line of the proof is the formula P

Formally captures the notion of mathematical proof

S proves P (S + P) if there is a proof of P from.S; alternatively, P follows from S

Example: Resolution proof

Soundness and Completeness

A proof system 1s sound if (intuitively) it preserves truth

Whenever S + P, if every formula in S is True, P 1s also True

Whenever S+ P, SE P
If you start with true assumptions, any conclusions must be true

A proof system is complete if it is capable of proving all consequences of any set of
premises (including infinite sets)

Whenever P is entailed by S, there 1s a proof of P from §
Whenever S F P, S+ P

A proof system 1s decidable if there 1s a mechanical procedure (computer program)

which when asked whether S+ P, can always answer ‘true’ — or ‘false’ —correctly

Resolution

A common type of proof system based on refutation

Better suited to computer implementation than systems of axioms and rules
(can give correct ‘false’ answers)

Decidable in the case of Propositional Logic
Generalises to First-Order Logic (see next set of lectures)

Needs all formulae to be converted to clausal form

Normal Forms

A literal £ is a propositional variable or the negation of a propositional variable (P or 7P)

A clause is a disjunction of literals £; Vi, v--- v{,
Conjunctive Normal Form (CNF) — a conjunction of clauses, e.g.
(PVOVR)AN(TSVTR) —or just one clause, e.g. PV QO
Disjunctive Normal Form (DNF) — a disjunction of conjunctions of literals, e.g.
(PNOATR)V(TS ATR) — or just one conjunction, e.g. PA QO

Every Propositional Logic formula can be converted to CNF and DNF
Every Propositional Logic formula 1s equivalent to its CNF and DNF

Conversion to Conjunctive Normal Form

Eliminate & rewriting P~ Qas (P-> QO)A(Q - P)
Eliminate - rewriting P - Qas 7PV Q
Use De Morgan’s laws to push = inwards (repeatedly)
Rewrite 7(PA Q) as " PV Q
Rewrite 7(PV Q) as " PA™Q
Eliminate double negations: rewrite 7P as P

Use the distributive laws to get CNF [or DNF] — if necessary
Rewrite (PA Q)V R as (PV R)A(Q V R) [for CNF]

Rewrite (PV O)A R as (PAR)V(Q A R) [for DNF]

Example Clausal Form

Clausal Form = set of clauses in the CNF
(P~ (OAR))
(7PV(QAR))
" PAT(QOAR)
T PA(TQOVTR)
PA(TQVTR)

Clausal Form: {P, "QO V™ R}

Resolution Rule of Inference

AV VA,V B ABVCiV--- VvV,

ANV VA,NC1V---V(C,
where B is a propositional variable and A4; and C; are literals

B and 7B are complementary literals

A1V~ VA,VC1V---VC, 1s the resolvent of the two clauses

Special case: If no 4;and C; , resolvent is empty clause, denoted U or L

Resolution Rule

Consider 41V VA,V Band "BvC,V---V(C,
Suppose both are True
If B 1s True, 7B 1s False so C1 V- -- VC, must be True

If B 1s False, A1 V-V A, must be True

Hence A1V VA, VCi{V---V(C, 1s True

Hence the resolution rule is sound

Starting with true premises, any conclusion made using resolution must be true

Applying Resolution: Naive Method

Convert knowledge base into clausal form

Repeatedly apply resolution rule to the resulting clauses

P follows from the knowledge base if and only if each clause in the CNF of P can be
derived using resolution from the clauses of the knowledge base (or subsumption)

Example
{P-> 0,0-> R}-P—-> R
Clauses 7PV Q, °QV R, show 7PV R

Follows from one resolution step (Q and 7Q cancel, leaving 7PV R)

Refutation Systems

To show that P follows from S (i.e. S + P) using refutation, start with S and 7P in clausal
form and derive a contradiction using resolution

A contradiction is the “empty clause” (a clause with no literals)
The empty clause O is unsatisfiable (always False)

So i1f the empty clause OJ is derived using resolution, the original set of clauses is
unsatisfiable (never all True together)

That is, 1f we can derive O from the clausal forms of .S and 7P, these clauses can never
be all True together

Hence whenever the clauses of S are all True, at least one clause from

=P must be False, 1.e. 7P must be False and P must be True

By definition, S F P (so P can correctly be concluded from §)

Applying Resolution Refutation

Negate query to be proven (resolution is a refutation system)

Convert knowledge base and negated query into CNF

Repeatedly apply resolution until either the empty clause (contradiction) is
derived or no more clauses can be derived

If the empty clause 1s derived, answer ‘true’ (query follows from knowledge
base), otherwise answer ‘false’ (query does not follow from knowledge base)

Resolution: Example 1

(GVH) - ("JA-K),GF~J
Clausal form of is { -GV ~J,~HV ~J,~GV -K,~HV ~K}

1. -GVv~J
. HVAJ
.GV K
. "HV K

o0 ~ (@) N AN () [\
_ —. —_. —. — —. — —

o

o]

(¢}

=

2]

o

Resolution: Example 2

P—--0,-O0—->RFP->R
Recall P> R< -PVR
Clausal form of = (=P V R) is {P, R}

[U—

N o v A w

=PV -Q
.QVR

P

-R

-0

R

O

[Premise]
[Premise
[= Query
[= Query
[1, 3 Resolution]
[2, 5 Resolution
|

4, 6 Resolution]

Resolution: Example 3

F({PVO)A-P)— O
Clausal form of H (PVO)A-P) - Qis {PV Q,~P,~0}

<: 1.PVvQ [— Query]

2. P [— Query]
3.0 [~ Query]

< 4. Q [1, 2 Resolution
5.0 [3, 4 Resolution]

Rewriting negated query in CNF:
~[((PVQ)A=P) = (]

[(P VO)A=P)V O]
"((PVO)A-P)A=Q
(PVQO)ANPA-Q

Now write in clausal form:

{PVQ,~P =0}

Soundness and Completeness Again

For Propositional Logic

Resolution refutation is sound, 1.e. it preserves truth (if a set of premises are all true,
any conclusion drawn from those premises must also be true)

Resolution refutation is complete, 1.€. it 1s capable of proving all consequences of
any knowledge base (not shown here!)

Resolution refutation is decidable, i.e. there 1s an algorithm implementing
resolution which when asked whether S + P, can always answer ‘true’ or

‘false’ (correctly)

Heuristics in Applying Resolution

Clause elimination — can disregard certain types of clauses

Pure clauses: contain literal L where 7L doesn’t appear elsewhere

Tautologies: clauses containing both L and 7L

Subsumed clauses: another clause 1s a subset of the literals

Ordering strategies
Resolve unit clauses (only one literal) first
Start with query clauses

Aim to shorten clauses

Horn Clauses

Using a less expressive language makes proof procedure easier.

Review
literal — proposition variable or negation of proposition variable

clause — disjunction of literals
Definite Clause — exactly one positive literal
e.g. BVIAV...V74,,1.e. B« Ai1N... \NA,
Negative Clause — no positive literals
e.g. 701 V0, (negation of a query)

Horn Clause — clause with at most one positive literal

Prolog

Horn clauses in First-Order Logic
SLD resolution
Depth-first search strategy with backtracking

User control
Ordering of clauses in Prolog database (facts and rules)

Ordering of subgoals in body of a rule

Prolog is a programming language based on resolution refutation relying on the
programmer to exploit search control rules

Prolog Clauses

P—-Q,R,S.
P—QOnARNAS.
Pv =(QA R A S)
Pv—-Qv—-Rv~—S§

Prolog DB = set of clauses

Queries:
7-Q,R, S

L —<OARAS
—(QA R A S)
Qv "Rv—§

P—->Q0=-PVvQ
P—Q=PV-0

1 = false (i.e. a contradiction)

SLD Resolution — g, p NN

Selected literals Linear form Definite clauses resolution

SLD refutation of a clause C from a set of clauses KB is a sequence

1. First clause of sequence 1s C
2. Each intermediate clause C;is derived by resolving the previous

clause C;-1 and a clause fromKRB

3. The last clause in the sequence is [

For a definite KB and negative clause query Q: KBU QO+ [J
if and only if KBU Q Fs1p O

Prolog Example

r.
Uu.
V.

q :—- I,
S :— Vo

p = d,

?- p.
true

r,

S.

facts

rules

query

Example Execution of Prolog interpreter

i' Initial goal set = {p}
v. 1.{q, r, s} because p:-q,r,s.
) 2. {r,u,r,s} because q :- 1, u.

] 3.{u,r,s} because r.
(sl : \]j, e 4. {r,s} because u.

)) 5. {s} because .
P = dr Ly S 6. {v} because s :- v
2~ b 7. {} because v.
)) 8. => true because empty clause

* In each step, we remove the first element in the goal set and replace it with the body of the
clause whose head matches that element. E.g. remove p and replace by q, r, s.

* Note: The simple Prolog interpreter isn’t smart enough to remove the duplication of r in step 2.

Prolog Interpreter

Input: A query Q and a logic program KB
Output: ‘true’ if QO follows from KB, ‘false’ otherwise
Initialise current goal set to { O}
while the current goal set is not empty do
Choose G from the current goal set; (first in goal set)

[Make a Copy G - B Y By of a clause from KB]‘\Inefﬁcient and not how a

(try all in KB) (if no such rule, try alternative rules) real Prolog interpreter works

Replace G by B1,..., B,in current goal set
if current goal set is empty:

output ‘true’
else output ‘false’

Depth-first, left-right with backtracking

Conclusion: Propositional Logic

Propositions built from A, V, 77, >

Sound, complete and decidable proof systems (inference procedures)

Resolution refutation

Prolog for special case of definite clauses

Limited expressive power
Cannot express ontologies (no relations)

First-Order Logic can express knowledge about objects, properties and
relationships between objects

