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This Lecture


! Proof systems

" Soundness, completeness, decidability


! Resolution and Refutation


! Horn clauses and SLD resolution


! Prolog



Summary So Far


! Propositional Logic


" Syntax: Formal language built from #, $, %, & 

" Semantics: Definition of truth table for every formula

"  if whenever all formulae in S are True, P is True


! Proof System

" System of axioms and rules for deduction

" Enables computation of proofs of P from S


! Basic Questions

" Are the proofs that are computed always correct? (soundness)

" If , is there always a proof of P from S (completeness)

S ⊧ P

S ⊧ P



Mechanising Proof


! A proof of a formula P from a set of premises S is a sequence of lines in which any line 
in the proof is


1. An axiom of logic or premise from S, or

2. A formula deduced from previous lines of the proof using a rule  of inference and 

the last line of the proof is the formula P


! Formally captures the notion of mathematical proof


! S proves P (S ('P) if there is a proof of P from S;  alternatively, P follows from S


! Example: Resolution proof



Soundness and Completeness


! A proof system is sound if (intuitively) it preserves truth

" Whenever S ('P, if every formula in S is True, P is also True


" Whenever S ('P, 


" If you start with true assumptions, any conclusions must be true

! A proof system is complete if it is capable of proving all consequences of any set of 

premises (including infinite sets)


" Whenever P is entailed by S, there is a proof of P from S


" Whenever , S ('P

! A proof system is decidable if there is a mechanical procedure  (computer program) 

which when asked whether S ('P, can always  answer ‘true’ – or ‘false’ – correctly

S ⊧ P

S ⊧ P



Resolution


! A common type of proof system based on refutation


! Better suited to computer implementation than systems of axioms and  rules 
(can give correct ‘false’ answers)


! Decidable in the case of Propositional Logic


! Generalises to First-Order Logic (see next set of lectures)


! Needs all formulae to be converted to clausal form



Normal Forms


! A literal ℓ  is a propositional variable or the negation of a propositional  variable (P or %P)


! A clause is a disjunction of literals ℓ1 $ ℓ 2  $) ) ) '$ ℓ n 


! Conjunctive Normal Form (CNF) — a conjunction of clauses, e.g.


(P $'Q $%R)  # (%S $%R)  – or just one clause, e.g. P  $'Q


! Disjunctive Normal Form (DNF) — a disjunction of conjunctions of literals, e.g.


(P #'Q #%R )  $ (%S #%R )  – or just one conjunction, e.g.  P #'Q


! Every Propositional Logic formula can be converted to CNF and DNF


! Every Propositional Logic formula is equivalent to its CNF and DNF



Conversion to Conjunctive Normal Form


! Eliminate * 'rewriting P * 'Q as (P & 'Q) # (Q & 'P)


! Eliminate & 'rewriting P & 'Q as %P $'Q


! Use De Morgan’s laws to push %' inwards (repeatedly)


" Rewrite %(P #'Q) as %P $%Q 


" Rewrite %(P $'Q) as %P #%Q 


! Eliminate double negations: rewrite %%P as P


! Use the distributive laws to get CNF [or DNF] – if necessary


" Rewrite (P #'Q) $'R as (P $'R) # (Q $'R) [for CNF]


" Rewrite (P $'Q) #'R as (P #'R) $ (Q #'R) [for DNF]



Example Clausal Form


Clausal Form = set of clauses in the CNF


! %(P & '(Q #'R))


! %(%P $ (Q #'R))


! %%P #% (Q #'R)


! %%P # (%Q $%R) 


! P # (%Q $%R) 


! Clausal Form: +P, %Q $%R ,



A1 $) ) ) '$ 'Am $'B

Resolution Rule of Inference

%B $C1 $) ) ) '$Cn

A1 $) ) ) '$ 'Am $C1 $) ) ) '$Cn


where B is a propositional variable and Ai and Cj are literals


! B and %B are complementary literals


! A1 $) ) ) '$ 'Am $C1 $) ) ) '$Cn is the resolvent of the two clauses


! Special case: If no Ai and Cj , resolvent is empty clause, denoted  ◻︎or   ⊥



Resolution Rule

! Consider A1 $) ) ) '$ 'Am $'B and %B $C1 $) ) ) '$Cn 


" Suppose both are True


" If B is True, %B is False so C1 $) ) ) '$Cn must be True


" If B is False, A1 $) ) ) '$ 'Am must be True


" Hence A1 $) ) ) '$ 'Am $C1 $) ) ) '$Cn is True


Hence the resolution rule is sound

! Starting with true premises, any conclusion made using resolution must be true



Applying Resolution: Naive Method


! Convert knowledge base into clausal form


! Repeatedly apply resolution rule to the resulting clauses


! P follows from the knowledge base if and only if each clause in the CNF of P can be 
derived using resolution from the clauses of the knowledge base (or subsumption)


! Example


" +P & 'Q, Q & 'R,'('P & 'R


" Clauses %P $'Q, %Q $'R, show %P $'R


" Follows from one resolution step (Q and %Q cancel, leaving %P $'R)



Refutation Systems


! To show that P follows from S (i.e. S ('P) using refutation, start with S and %P in clausal 
form and derive a contradiction using resolution


! A contradiction is the “empty clause” (a clause with no literals)


! The empty clause ☐'is unsatisfiable (always False)


! So if the empty clause -'is derived using resolution, the original set of clauses is 
unsatisfiable (never all True together)


! That is, if we can derive -'from the clausal forms of S and %P, these  clauses can never 
be all True together


! Hence whenever the clauses of S are all True, at least one clause from

%P must be False, i.e. %P must be False and P must be True


! By definition,  (so P can correctly be concluded from S)S ⊧ P



Applying Resolution Refutation

! Negate query to be proven (resolution is a refutation system)


! Convert knowledge base and negated query into CNF


! Repeatedly apply resolution until either the empty clause (contradiction) is 
derived or no more clauses can be derived


! If the empty clause is derived, answer ‘true’ (query follows from  knowledge 
base), otherwise answer ‘false’ (query does not follow from  knowledge base)



Resolution: Example 1





Clausal form of is 


1. 	 [Premise]


2. 	 [Premise]


3. 	 [Premise]


4. 	 [Premise]


5. 	 [Premise]


6. 	 [  Query]


7. 	 [1, 6 Resolution]


8. 	 [5, 7 Resolution]

(G ∨ H) → (¬J ∧ ¬K), G ⊢ ¬J

{¬G ∨ ¬J, ¬H ∨ ¬J, ¬G ∨ ¬K, ¬H ∨ ¬K}

¬G ∨ ¬J

¬H ∨ ¬J

¬G ∨ ¬K

¬H ∨ ¬K

G

J ¬

¬G

□



Resolution: Example 2





Recall 


Clausal  form of  is 


1. 	 [Premise]


2. 	 [Premise]


3. 	 [  Query]


4. 	 [  Query]


5. 	 [1, 3 Resolution]


6. 	 [2, 5 Resolution


7. 	 [4, 6 Resolution]

P → ¬Q, ¬Q → R ⊢ P → R
P → R ⇔ ¬P ∨ R

¬(¬P ∨ R) {P, ¬R}

¬P ∨ ¬Q

Q ∨ R

P ¬

¬R ¬

¬Q

R

□



Resolution: Example 3





Clausal form of  is 


1. 	 [  Query]


2. 	 [  Query]


3. 	 [  Query]


4. 	 [1, 2 Resolution


5. 	 [3, 4 Resolution]

⊢ ((P ∨ Q) ∧ ¬P) → Q
⊢ ((P ∨ Q) ∧ ¬P) → Q {P ∨ Q, ¬P, ¬Q}

P ∨ Q ¬

¬P ¬

¬Q ¬

Q

□

Rewriting negated query in CNF:








Now write in clausal form:


¬[((P ∨ Q) ∧ ¬P) → Q]

¬[¬((P ∨ Q) ∧ ¬P) ∨ Q]

¬¬((P ∨ Q) ∧ ¬P) ∧ ¬Q

(P ∨ Q) ∧ ¬P ∧ ¬Q

{P ∨ Q, ¬P, ¬Q}



Soundness and Completeness Again


For Propositional Logic

! Resolution refutation is sound, i.e. it preserves truth (if a set of  premises are all true, 

any conclusion drawn from those premises must also be true)


! Resolution refutation is complete, i.e. it is capable of proving all consequences of 
any knowledge base (not shown here!)


! Resolution refutation is decidable, i.e. there is an algorithm  implementing 
resolution which when asked whether S ('P, can  always answer ‘true’ or 
‘false’ (correctly)



Heuristics in Applying Resolution


! Clause elimination — can disregard certain types of clauses


" Pure clauses: contain literal L where %L doesn’t appear elsewhere


" Tautologies: clauses containing both L and %L


" Subsumed clauses: another clause is a subset of the literals


! Ordering strategies

" Resolve unit clauses (only one literal) first

" Start with query clauses

" Aim to shorten clauses



Horn Clauses


Using a less expressive language makes proof procedure easier.


! Review

" literal – proposition variable or negation of proposition variable

" clause – disjunction of literals


! Definite Clause – exactly one positive literal


" e.g. B $%A1  $ . . .  $%An,  i.e. B . 'A1 # . . .  #'An


! Negative Clause – no positive literals


" e.g. %Q1 $%Q2  (negation of a query)


! Horn Clause – clause with at most one positive literal



Prolog


! Horn clauses in First-Order Logic


! SLD resolution


! Depth-first search strategy with backtracking


! User control

" Ordering of clauses in Prolog database (facts and rules)

" Ordering of subgoals in body of a rule


! Prolog is a programming language based on resolution refutation relying on the 
programmer to exploit search control rules



Prolog Clauses


P :– Q, R, S.


P ← Q ∧  R ∧  S . 


P  ∨  ¬(Q∧  R ∧  S ) 


P  ∨  ¬Q ∨  ¬R ∨  ¬S


Prolog DB = set of clauses

Queries:


?- Q, R, S





¬(Q∧  R ∧  S ) 


¬Q ∨  ¬R ∨  ¬S

⊥ ← Q ∧ R ∧ S







false (i.e. a contradiction)

P → Q ≡ ¬P ∨ Q

P ← Q ≡ P ∨ ¬Q

⊥ ≡



SLD Resolution – (SLD


! Selected literals Linear form Definite clauses resolution


! SLD refutation of a clause C from a set of clauses KB is a sequence

1. First clause of sequence is C

2. Each intermediate clause Ci is derived by resolving the previous  

clause Ci/1 and a clause from KB


3. The last clause in the sequence is -


! For a definite KB and negative clause query Q: KB 0'Q ('-'1
if and only if KB 0'Q (SLD -

KB

C1

C2

☐

C



Prolog Example

r.	 % facts

u.

v.


q :- r, u.	 % rules

s :- v.

p :- q, r, s.


?- p.	 % query

true



Example Execution of Prolog interpreter

Initial goal set = {p}

1. {q, r,  s}	 because  p :- q, r, s.

2. {r, u, r, s}	 because q :- r, u.

3. {u, r, s}	 because r.

4. {r, s}	 because u.

5. {s} 	 because r.

6. {v} 	 because s :- v

7. {} 	 because v.

8. => true	 because empty clause

r.

u.

v.


q :- r, u.

s :- v.

p :- q, r, s.


?- p.

• In each step, we remove the first element in the goal set and replace it with the body of the 
clause whose head matches that element. E.g. remove p and replace by q, r, s.


• Note: The simple Prolog interpreter isn’t smart enough to remove the duplication of r in step 2. 



Inefficient	and	not	how	a	
real	Prolog	interpreter	works

Prolog Interpreter


Input: A query Q and a logic program KB

Output: ‘true’ if Q follows from KB, ‘false’ otherwise

	 Initialise current goal set to +Q , 

	 while the current goal set is not empty do

	 	 Choose G from the current goal set; (first in goal set)

	 	 Make a copy G2':- B1,..., Bn of a clause from KB

	 	 (try all in KB)  (if no such rule, try alternative rules)

	 	 Replace G by B1,..., Bn in current goal set

	 	 if current goal set is empty:

	 	 	 output ‘true’

	 	 else output ‘false’


! Depth-first, left-right with backtracking



Conclusion: Propositional Logic


! Propositions built from #, $, %, & 


! Sound, complete and decidable proof systems (inference procedures)

" Natural deduction

" Resolution refutation

" Prolog for special case of definite clauses

" Tableau method


! Limited expressive power

" Cannot express ontologies (no relations)

! First-Order Logic can express knowledge about objects, properties and 

relationships between objects


