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This Lecture 

! Proof systems 
" Soundness, completeness, decidability 

! Resolution and Refutation 

! Horn clauses and SLD resolution 

! Prolog



Summary So Far 

! Propositional Logic 

" Syntax: Formal language built from #, $, %, & '
" Semantics: Definition of truth table for every formula 
"  if whenever all formulae in S are True, P is True 

! Proof System 
" System of axioms and rules for deduction 
" Enables computation of proofs of P from S 

! Basic Questions 
" Are the proofs that are computed always correct? (soundness) 
" If , is there always a proof of P from S (completeness)

S ⊧ P

S ⊧ P



Mechanising Proof 

! A proof of a formula P from a set of premises S is a sequence of lines in which any line 
in the proof is 

1. An axiom of logic or premise from S, or 
2. A formula deduced from previous lines of the proof using a rule  of inference and 

the last line of the proof is the formula P 

! Formally captures the notion of mathematical proof 

! S proves P (S ('P) if there is a proof of P from S;  alternatively, P follows from S 

! Example: Resolution proof



Soundness and Completeness 

! A proof system is sound if (intuitively) it preserves truth 
" Whenever S ('P, if every formula in S is True, P is also True 

" Whenever S ('P,  

" If you start with true assumptions, any conclusions must be true 
! A proof system is complete if it is capable of proving all consequences of any set of 

premises (including infinite sets) 

" Whenever P is entailed by S, there is a proof of P from S 

" Whenever , S ('P 
! A proof system is decidable if there is a mechanical procedure  (computer program) 

which when asked whether S ('P, can always  answer ‘true’ – or ‘false’ – correctly

S ⊧ P

S ⊧ P



Resolution 

! A common type of proof system based on refutation 

! Better suited to computer implementation than systems of axioms and  rules 
(can give correct ‘false’ answers) 

! Decidable in the case of Propositional Logic 

! Generalises to First-Order Logic (see next set of lectures) 

! Needs all formulae to be converted to clausal form



Normal Forms 

! A literal ℓ  is a propositional variable or the negation of a propositional  variable (P or %P) 

! A clause is a disjunction of literals ℓ1 $ ℓ 2  $) ) ) '$ ℓ n  

! Conjunctive Normal Form (CNF) — a conjunction of clauses, e.g. 

(P $'Q $%R)  # (%S $%R)  – or just one clause, e.g. P  $'Q 

! Disjunctive Normal Form (DNF) — a disjunction of conjunctions of literals, e.g. 

(P #'Q #%R )  $ (%S #%R )  – or just one conjunction, e.g.  P #'Q 

! Every Propositional Logic formula can be converted to CNF and DNF 

! Every Propositional Logic formula is equivalent to its CNF and DNF



Conversion to Conjunctive Normal Form 

! Eliminate * 'rewriting P * 'Q as (P & 'Q) # (Q & 'P) 

! Eliminate & 'rewriting P & 'Q as %P $'Q 

! Use De Morgan’s laws to push %' inwards (repeatedly) 

" Rewrite %(P #'Q) as %P $%Q  

" Rewrite %(P $'Q) as %P #%Q  

! Eliminate double negations: rewrite %%P as P 

! Use the distributive laws to get CNF [or DNF] – if necessary 

" Rewrite (P #'Q) $'R as (P $'R) # (Q $'R) [for CNF] 

" Rewrite (P $'Q) #'R as (P #'R) $ (Q #'R) [for DNF]



Example Clausal Form 

Clausal Form = set of clauses in the CNF 

! %(P & '(Q #'R)) 

! %(%P $ (Q #'R)) 

! %%P #% (Q #'R) 

! %%P # (%Q $%R)  

! P # (%Q $%R)  

! Clausal Form: +P, %Q $%R ,



A1 $) ) ) '$ 'Am $'B

Resolution Rule of Inference

%B $C1 $) ) ) '$Cn

A1 $) ) ) '$ 'Am $C1 $) ) ) '$Cn 

where B is a propositional variable and Ai and Cj are literals 

! B and %B are complementary literals 

! A1 $) ) ) '$ 'Am $C1 $) ) ) '$Cn is the resolvent of the two clauses 

! Special case: If no Ai and Cj , resolvent is empty clause, denoted  □or   ⊥



Resolution Rule

! Consider A1 $) ) ) '$ 'Am $'B and %B $C1 $) ) ) '$Cn  

" Suppose both are True 

" If B is True, %B is False so C1 $) ) ) '$Cn must be True 

" If B is False, A1 $) ) ) '$ 'Am must be True 

" Hence A1 $) ) ) '$ 'Am $C1 $) ) ) '$Cn is True 

Hence the resolution rule is sound 
! Starting with true premises, any conclusion made using resolution must be true



Applying Resolution: Naive Method 

! Convert knowledge base into clausal form 

! Repeatedly apply resolution rule to the resulting clauses 

! P follows from the knowledge base if and only if each clause in the CNF of P can be 
derived using resolution from the clauses of the knowledge base (or subsumption) 

! Example 

" +P & 'Q, Q & 'R,'('P & 'R 

" Clauses %P $'Q, %Q $'R, show %P $'R 

" Follows from one resolution step (Q and %Q cancel, leaving %P $'R)



Refutation Systems 

! To show that P follows from S (i.e. S ('P) using refutation, start with S and %P in clausal 
form and derive a contradiction using resolution 

! A contradiction is the “empty clause” (a clause with no literals) 

! The empty clause ☐'is unsatisfiable (always False) 

! So if the empty clause -'is derived using resolution, the original set of clauses is 
unsatisfiable (never all True together) 

! That is, if we can derive -'from the clausal forms of S and %P, these  clauses can never 
be all True together 

! Hence whenever the clauses of S are all True, at least one clause from 
%P must be False, i.e. %P must be False and P must be True 

! By definition,  (so P can correctly be concluded from S)S ⊧ P



Applying Resolution Refutation

! Negate query to be proven (resolution is a refutation system) 

! Convert knowledge base and negated query into CNF 

! Repeatedly apply resolution until either the empty clause (contradiction) is 
derived or no more clauses can be derived 

! If the empty clause is derived, answer ‘true’ (query follows from  knowledge 
base), otherwise answer ‘false’ (query does not follow from  knowledge base)



Resolution: Example 1 

 

Clausal form of is  

1.  [Premise] 

2.  [Premise] 

3.  [Premise] 

4.  [Premise] 

5.  [Premise] 

6.  [  Query] 

7.  [1, 6 Resolution] 

8.  [5, 7 Resolution]

(G ∨ H) → (¬J ∧ ¬K), G ⊢ ¬J

{¬G ∨ ¬J, ¬H ∨ ¬J, ¬G ∨ ¬K, ¬H ∨ ¬K}

¬G ∨ ¬J

¬H ∨ ¬J

¬G ∨ ¬K

¬H ∨ ¬K

G

J ¬

¬G

□



Resolution: Example 2 

 

Recall  

Clausal  form of  is  

1.  [Premise] 

2.  [Premise] 

3.  [  Query] 

4.  [  Query] 

5.  [1, 3 Resolution] 

6.  [2, 5 Resolution 

7.  [4, 6 Resolution]

P → ¬Q, ¬Q → R ⊢ P → R
P → R ⇔ ¬P ∨ R

¬(¬P ∨ R) {P, ¬R}

¬P ∨ ¬Q

Q ∨ R

P ¬

¬R ¬

¬Q

R

□



Resolution: Example 3 

 

Clausal form of  is  

1.  [  Query] 

2.  [  Query] 

3.  [  Query] 

4.  [1, 2 Resolution 

5.  [3, 4 Resolution]

⊢ ((P ∨ Q) ∧ ¬P) → Q
⊢ ((P ∨ Q) ∧ ¬P) → Q {P ∨ Q, ¬P, ¬Q}

P ∨ Q ¬

¬P ¬

¬Q ¬

Q

□

Rewriting negated query in CNF:








Now write in clausal form:


¬[((P ∨ Q) ∧ ¬P) → Q]

¬[¬((P ∨ Q) ∧ ¬P) ∨ Q]

¬¬((P ∨ Q) ∧ ¬P) ∧ ¬Q

(P ∨ Q) ∧ ¬P ∧ ¬Q

{P ∨ Q, ¬P, ¬Q}



Soundness and Completeness Again 

For Propositional Logic 
! Resolution refutation is sound, i.e. it preserves truth (if a set of  premises are all true, 

any conclusion drawn from those premises must also be true) 

! Resolution refutation is complete, i.e. it is capable of proving all consequences of 
any knowledge base (not shown here!) 

! Resolution refutation is decidable, i.e. there is an algorithm  implementing 
resolution which when asked whether S ('P, can  always answer ‘true’ or 
‘false’ (correctly)



Heuristics in Applying Resolution 

! Clause elimination — can disregard certain types of clauses 

" Pure clauses: contain literal L where %L doesn’t appear elsewhere 

" Tautologies: clauses containing both L and %L 

" Subsumed clauses: another clause is a subset of the literals 

! Ordering strategies 
" Resolve unit clauses (only one literal) first 
" Start with query clauses 
" Aim to shorten clauses



Horn Clauses 

Using a less expressive language makes proof procedure easier. 

! Review 
" literal – proposition variable or negation of proposition variable 
" clause – disjunction of literals 

! Definite Clause – exactly one positive literal 

" e.g. B $%A1  $ . . .  $%An,  i.e. B . 'A1 # . . .  #'An 

! Negative Clause – no positive literals 

" e.g. %Q1 $%Q2  (negation of a query) 

! Horn Clause – clause with at most one positive literal



Prolog 

! Horn clauses in First-Order Logic 

! SLD resolution 

! Depth-first search strategy with backtracking 

! User control 
" Ordering of clauses in Prolog database (facts and rules) 
" Ordering of subgoals in body of a rule 

! Prolog is a programming language based on resolution refutation relying on the 
programmer to exploit search control rules



Prolog Clauses 

P :– Q, R, S. 

P ← Q ∧  R ∧  S .  

P  ∨  ¬(Q∧  R ∧  S )  

P  ∨  ¬Q ∨  ¬R ∨  ¬S 

Prolog DB = set of clauses

Queries: 

?- Q, R, S 

 

¬(Q∧  R ∧  S )  

¬Q ∨  ¬R ∨  ¬S

⊥ ← Q ∧ R ∧ S

 

 

false (i.e. a contradiction)

P → Q ≡ ¬P ∨ Q

P ← Q ≡ P ∨ ¬Q

⊥ ≡



SLD Resolution – (SLD 

! Selected literals Linear form Definite clauses resolution 

! SLD refutation of a clause C from a set of clauses KB is a sequence 
1. First clause of sequence is C 
2. Each intermediate clause Ci is derived by resolving the previous  

clause Ci/1 and a clause from KB 

3. The last clause in the sequence is -'

! For a definite KB and negative clause query Q: KB 0'Q ('-'1
if and only if KB 0'Q (SLD -

KB

C1

C2

☐

C



Prolog Example

r. % facts
u.
v.

q :- r, u. % rules
s :- v.
p :- q, r, s.

?- p. % query
true



Example Execution of Prolog interpreter

Initial goal set = {p}
1. {q, r,  s} because  p :- q, r, s.
2. {r, u, r, s} because q :- r, u.
3. {u, r, s} because r.
4. {r, s} because u.
5. {s} because r.
6. {v} because s :- v
7. {} because v.
8. => true because empty clause

r.
u.
v.

q :- r, u.
s :- v.
p :- q, r, s.

?- p.

• In each step, we remove the first element in the goal set and replace it with the body of the 
clause whose head matches that element. E.g. remove p and replace by q, r, s.


• Note: The simple Prolog interpreter isn’t smart enough to remove the duplication of r in step 2. 



Inefficient	and	not	how	a	
real	Prolog	interpreter	works

Prolog Interpreter 

Input: A query Q and a logic program KB 
Output: ‘true’ if Q follows from KB, ‘false’ otherwise 
 Initialise current goal set to +Q , '
' while the current goal set is not empty do 
  Choose G from the current goal set; (first in goal set) 
  Make a copy G2':- B1,..., Bn of a clause from KB 
  (try all in KB)  (if no such rule, try alternative rules) 
  Replace G by B1,..., Bn in current goal set 
  if current goal set is empty: 
   output ‘true’ 
  else output ‘false’ 

! Depth-first, left-right with backtracking



Conclusion: Propositional Logic 

! Propositions built from #, $, %, & '

! Sound, complete and decidable proof systems (inference procedures) 
" Natural deduction 
" Resolution refutation 
" Prolog for special case of definite clauses 
" Tableau method 

! Limited expressive power 
" Cannot express ontologies (no relations) 
! First-Order Logic can express knowledge about objects, properties and 

relationships between objects


