Agents

COMP3411/9814:
Artificial Intelligence

Types of Agents

Reactive Agent
Model-Based Agent
Planning Agent
Utility-based agent
Game Playing Agent
Learning Agent

Agent Model

Agent
Sensors ¢
l Percepts
?
Actuators Actions

Reactive Agent

Agent

Perception — Action

Reactive Agent

* Choose the next action based only on what agent
currently perceives

* Uses a “policy” or set of rules that are simple to apply
 Sometimes called “simple reflex agents”

* but they can do surprisingly sophisticated things

Reactive Agent

Reactive Agent

What the world
is like now

s . What action I
Yiugonl

Reflex (reactive) agent — applies condition-action rules to each percept

Reactive Robots

Limitations of Reactive Agents

botworld(512, 512,

[

box(1, 30, 50, 250, 55),
box(2, 290, 90, 310, 305),

beacon(1, 200, 250),

bar(1, 100, 150, 20),
bar(2, 200, 390, 275),
bar(3, 220, 100, 75),
bar(4, 380, 90, 20),
bar(5, 80, 80, 275),
bar(6, 60, 270, 75),
bar(7, 200, 340, 20),
bar(8, 120, 90, 275),
bar(9, 280, 250, 75),
bar(10, 120, 290, 40),
bar(11, 380, 290, 40),
bar(12, 220, 150, 40)

bot(1, "north"),
bot(2, "south"),
bot(3, "east"),
bot(4, "west")

10

Teleo-Reactive Program (TOP)

def bot(myNum, side) =
{

var barNum = nearest_bar();

atBeacon(1, side) —>

say("At beacon");
turnTo(200, 250);
stop();

holding() and obstructedBeacon(1, side) -> find_opening(200)

holding() —> gotoBeacon(1, side)
At beacon |

gotoBar(barNum) —>
O {

grab(barNum) ;
\ ig say("Found it");
}

true —>

T turn(random(-180, 180);
move(random(50, 300));
b

+;

____—_

def find_opening(dist) =
obstructed_to(dist) -> turn(random(5, 15))

true —> move(random(@, dist))

11

Limitations of Reactive Agents

* Reactive Agents have no memory or “state”
— unable to base decision on previous observations

— may repeat the same sequence of actions over and
over

— Escape from infinite loops is (sometimes) possible if
the agent can randomise its actions.

Model-Based Agent

Agent
World Model ‘
Perception — Action

M

Model-based Agents

Handle partial observability by keeping track of the part of the
world it can’t see now.

Maintain internal state that depends on the percept history and
remembers at least some of the unobserved aspects of the
current state.

Knowledge about “how the world works” is called a model of the
world.

An agent that uses such a model is called a model-based agent.

14

Model-based Reflex Agent

b

A model-based reflex agent. It keeps track of the current state of the world, using an
internal model. It then chooses an action in the same way as the reflex agent.

15

’R

——
r

‘-"\ ’
RN ﬂ
TRy g g 8 '-,

Model-based Reflex Agent

/

-

8 o Bl
S A -
- - L
"

16

Limitations of Model-Based Agents

* An agent with a world model but no planning can look into the past, but
not into the future; it will perform poorly when the task requires any of the
following:

» searching several moves ahead
— Chess, Rubik’s cube

« complex tasks requiring many individual step
— cooking a meal, assembling a watch

* |ogical reasoning to achieve goals

—travel to New York
Sometimes we may need to plan several steps into the future

Planning Agent

Agent
World Model - Planning ‘
Perception ‘—» Action ‘

M

Goal-Based Agent

Planning Agent

* Decision making of this kind is fundamentally different from the
condition—action rules

|t involves consideration of the future
— “What will happen if | do such-and-such?” and

— “Will that make me happy?”

In the reflex agent designs, this information is not explicitly represented,
because the built-in rules map directly from states to actions

Models and Planning

World Model

-Transition table
-Dynamical system
-Parametric model
-Knowledge base

-

Planning
-State-based search
-Simulation

-Goals/utility

\ -Logical inference

Perception ‘

» Action |

|

20

Reasoning about Future States

 What is the best action in this situation?
* Faking it

— Sometimes an agent may appear to be planning ahead but
Is actually just applying reactive rules.

— These rules can be hand-coded, or learned from
experience.

— Agent may not be flexible enough to adapt to new
situations.

Planning Agent — Goal-based

* The planning agent or goal-based agent is more
flexible because the knowledge that supports its

decisions is represented explicitly and can be modified.

* The agent’s behaviour can easily be changed.
* But ...

* |t’'s slower to react because it has to “think” about
what it’s doing.

22

Goal-based (teleological) agent

What the world
How the world evolves is like now

. What it will be like
if I do action A

m What action I
should do now

- State description often not sufficient for agent to decide what to do
« Needs to consider its goals (may involve searching and planning)

23

Planning usually needs search

:-// \-:_\

~ N\
£
VNI

|

@Home Robot

25

Utility-based agent

* A rational utility-based agent chooses the action that maximises the
expected utility of the action outcomes

—that is, the utility the agent expects to derive, on average, given the
probabilities and utilities of each outcome.

* The utility-based agent is not easy to implement
— It has to model and keep track of its environment

— Tasks involved a great deal of research on perception, representation,
reasoning, and learning.

— It can be implemented as a decision-making agent that must handle the
uncertainty inherent in stochastic or partially observable environments.

Utility-based agent

@ow the world evolves

(What my actions do

t&gent

Sensors =

~
N
\ ‘

What the world
1s like now

Y

What it will be like
if I do action A

]

How happy I will be
in such a state

Y

What action

should do now

Y

Actuators

JUSWIUOITAUH

* Model-based, utility-based agent uses
* model of world

« utility function that measures
preferences among states of world

* Chooses action that leads to best
expected utility

» Expected utility is computed by
averaging over all possible outcome
states

» Weighted by probability of outcome.

27

Game Playing Agent

World Model Planning
T v | ' - Minimax Search
Opponent Model - Alpha-Beta Pruning

T \ v
b

Perception Action |

T

Learning Agent

Performance standard

(Critic

feedback

Learning
element

learning
goals

Problem
generator

Qgent

changes

knowledge

Sensors —==

Performance
element

Y

Actuators

JUSWIUOJIAUH

:

Learning Agent G F—

JUdWUOIIAUH

Performance element takes percepts; decides actions

Critic gives feedback on how performance element is doing

Learning element uses feedback to determine how performance
element should be modified to do better in future

Problem generator creates new tasks to provide new and
informative experiences.

Learning Agent

World Model

Bayesian Learning

Perception

Statistical Learning

Agent

Inference Learning

Reinforcement Learning

Environment

31

Learning

* Learning is not a separate module, but rather a set of
techniques for improving the existing modules

* Learning is necessary because:

— may be difficult or even impossible for a human to
design all aspects of the system by hand

—the agent may need to adapt to new situations without
being re-programmed by a human

Summary

Reactive agents respond directly to percepts

Model-based reflex agents maintain internal state to track
aspects of the world that are not evident in the current
percept

Planning (Goal-based) agents act to achieve their goals
Utility-based agents try to maximise expected “happiness.”

All agents can improve their performance through learning.

Representation and Search

* The world model must be represented in a way that
makes reasoning easy.

* Reasoning (problem solving and planning) in Al almost
always involves some kind of search amongst possible
solutions.

Layered Architecture

Hierarchy of controllers

Controller gets percepts from and sends
commands to the lower layer

— Abstracts low level features into higher level
(perception)

— Translates high level commands into actuator
instructions (action)

Controllers have different representations,
programs

Controllers operate at different time scales

Lower-level controller can override its commands

ROBOT

CONTROLLER

perceptsT lcommands

BODY

stimuli actions

35

Example — Delivery Robot

| plan

to_d ’
d o———Pp= follow p|an _—%’m -

target_pos

o to target and target_pos >t - ’
% - ———Pp= e g s

avoid obstacles

rob_pos

rob_dir
whisker
crashed

steer

steer robot, report
e T——————P») - = o]
' obstacles and position .

-------‘----.-------

Delivery Robot

v

Environment

Delivery Robot — Top Layer

plan

T ™ flowpln =07 . follow plan
w ﬁ.target_ pos pr evious
rriv timeout
o o o ® .a- e-d - e S ey ® o - to_do

- go to target and target_pos > ‘ C €>_’ lo dO >.=>
’ avoid obstacles - —

rob_pos

rob_dir steer
whisker
crashed

+—p steer robot, report .
obstacles and position

L4

Delivery Robot B tlmeOUt Tal’ et os
I arrived geLp

Environment

Delivery Robot — Middle Layer

o ————Jp! follow plan —————pp *

remainin
Target_pos % remaining —>@—>
arrived e e o !

plan arrived lﬁmeout ltargetpos

timeout
o e e o coeleooolteooeoeesd -
target_pos
go to target and target_pos . ! .

— Sodobiades P —— — —> target pos o—

rob_pos

rob_dir steer

whisker

crashed

+—p steer robot, report .
obstacles and position

L4

Delivery Robot

v
Environment rob_pos|| rob_dir|| whisker|| crashed steer

Delivery Robot — TR Code Example

followPlan(to_do): goToTarget(target_pos):

empty(to_do) = stop; arrived() or timeout() - {set arrived; stop;}

arrived() or timeout() > whisker_sensor = on = steer left;

{ straight_ahead(rob_pos, robot_dir, target_pos) - steer(straight);
resetTimer(200);
plan := rest(to_do); left_of(rob_pos, robot_dir, target_pos) - steer(left);

} true - steer(right)

true - goToTarget(coordinates(first(to_do));

Delivery Robot — Simulation

60 . .
robot path e
obstacle e=
40+ goals @

i

start

0 20 40 60 80 100

References

* Poole &Mackworth, Artificial Intelligence: Foundations
of Computational Agents, Chapter 1 & 2

* Russell & Norvig, Artificial Intelligence: a Modern Approach,
Chapter 2.

