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Types of Agents

• Reactive Agent 

• Model-Based Agent 

• Planning Agent 

• Utility-based agent

• Game Playing Agent 

• Learning Agent 
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Agent Model 
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Reactive Agent 
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Reactive Agent 

• Choose the next action based only on what agent 
currently perceives

• Uses a “policy” or set of rules that are simple to apply 

• Sometimes  called “simple reflex agents”

• but they can do surprisingly sophisticated things
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Reactive Agent
repeat 

if left touch:

backup

turn right


else if right touch:

backup

turn left


else 
go straight
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Reactive  Agent 
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Reflex (reactive) agent — applies condition-action rules to each percept 



Reactive Robots
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Limitations of Reactive Agents 
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botworld(512, 512,

	 [	 

	 	 box(1, 30, 50, 250, 55),

	 	 box(2, 290, 90, 310, 305),


	 	 beacon(1, 200, 250),


	 	 bar(1, 100, 150, 20),

	 	 bar(2, 200, 390, 275),

	 	 bar(3, 220, 100, 75),

	 	 bar(4, 380, 90, 20),

	 	 bar(5, 80, 80, 275),

	 	 bar(6, 60, 270, 75),

	 	 bar(7, 200, 340, 20),

	 	 bar(8, 120, 90, 275),

	 	 bar(9, 280, 250, 75),

	 	 bar(10, 120, 290, 40),

	 	 bar(11, 380, 290, 40),

	 	 bar(12, 220, 150, 40)

	 ],

	 [

	 	 bot(1, "north"),

	 	 bot(2, "south"),

	 	 bot(3, "east"),

	 	 bot(4, "west")

	 ]

);
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def bot(myNum, side) =

{

	 var barNum = nearest_bar();


	 atBeacon(1, side) ->

	 	 {

	 	 	 say("At beacon");

	 	 	 turnTo(200, 250);

	 	 	 stop();

	 	 }

|

	 holding() and obstructedBeacon(1, side) -> find_opening(200)

|

	 holding() -> gotoBeacon(1, side)

|

	 gotoBar(barNum) ->

	 	 {

	 	 	 grab(barNum);

	 	 	 say("Found it");

	 	 }

|	 true ->

	 	 {

	 	 	 turn(random(-180, 180);

	 	 	 move(random(50, 300));

	 	 };

};


def find_opening(dist) =


	 obstructed_to(dist) -> turn(random(5, 15))

|

	 true -> move(random(0, dist))

;


Teleo-Reactive Program (TOP)



Limitations of Reactive Agents 

• Reactive Agents have no memory or “state”

– unable to base decision on previous observations

–may repeat the same sequence of actions over and 

over

– Escape from infinite loops is (sometimes) possible if 

the agent can randomise its actions. 
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Model-Based Agent 
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Model-based Agents 
• Handle partial observability by keeping track of the part of the 

world it can’t see now. 

• Maintain internal state that depends on the percept history and 

remembers at least some of the unobserved aspects of the 
current state. 


• Knowledge about “how the world works” is called a model of the 
world.


• An agent that uses such a model is called a model-based agent. 
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Model-based Reflex Agent 
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A model-based reflex agent. It keeps track of the current state of the world, using an 
internal model. It then chooses an action in the same way as the reflex agent. 



Model-based Reflex Agent 
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Limitations of Model-Based Agents 
• An agent with a world model but no planning can look into the past, but 

not into the future; it will perform poorly when the task requires any of the 
following: 


• searching several moves ahead 

– Chess, Rubik’s cube 

• complex tasks requiring many individual step

– cooking a meal, assembling a watch 

•  logical reasoning to achieve goals 

– travel to New York 
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Sometimes we may need to plan several steps into the future



Planning Agent 
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Goal-Based Agent 
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Planning Agent 
• Decision making of this kind is fundamentally different from the 

condition–action rules 

• It involves consideration of the future 

– “What will happen if I do such-and-such?” and 

– “Will that make me happy?” 


In the reflex agent designs, this information is not explicitly represented, 
because the built-in rules map directly from states to actions
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Models and Planning 
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Reasoning about Future States 
• What is the best action in this situation?

• Faking it 

– Sometimes an agent may appear to be planning ahead but 

is actually just applying reactive rules. 

– These rules can be hand-coded, or learned from 

experience. 

– Agent may not be flexible enough to adapt to new 

situations. 
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Planning Agent –  Goal-based
• The planning agent or  goal-based agent  is more 

flexible because the knowledge that supports its 
decisions is represented explicitly and can be modified. 


• The agent’s behaviour can easily be changed.

• But …

• it’s slower to react because it has to “think” about 

what it’s doing.
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Goal-based (teleological) agent
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• State description often not sufficient for agent to decide what to do

• Needs to consider its goals (may involve searching and planning) 



Planning usually needs search
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@Home Robot
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Utility-based agent 
• A rational utility-based agent chooses the action that maximises the 

expected utility of the action outcomes

– that is, the utility the agent expects to derive, on average, given the 

probabilities and utilities of each outcome. 

• The utility-based agent  is not easy to implement

– It has to model and keep track of its environment  

– Tasks involved a great deal of research on perception, representation, 

reasoning, and learning. 

– It can be implemented as a decision-making agent that must handle the 

uncertainty inherent in stochastic or partially observable environments. 
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Utility-based agent 
• Model-based, utility-based agent uses

• model of world

• utility function that measures 

preferences among states of world

• Chooses action that leads to best 

expected utility

• Expected utility is computed by 

averaging over all possible outcome 
states


• Weighted by probability of outcome. 
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Game Playing Agent 
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Learning Agent Section 2.4. The Structure of Agents 55
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Figure2.15 A general learning agent.

He estimates how much work this might take and concludes “Some more expeditious method
seems desirable.” The method he proposes is to build learning machines and then to teach
them. In many areas of AI, this is now the preferred method for creating state-of-the-art
systems. Learning has another advantage, as we noted earlier: it allows the agent to operate
in initially unknown environments and to become more competent than its initial knowledge
alone might allow. In this section, we briefly introduce the main ideas of learning agents.
Throughout the book, we comment on opportunities and methods for learning in particular
kinds of agents. Part V goes into much more depth on the learning algorithms themselves.

A learning agent can be divided into four conceptual components, as shown in Fig-
ure 2.15. The most important distinction is between the learning element, which is re-LEARNINGELEMENT

sponsible for making improvements, and the performanceelement, which is responsible forPERFORMANCE
ELEMENT

selecting external actions. The performance element is what we have previously considered
to be the entire agent: it takes in percepts and decides on actions. The learning element uses
feedback from the critic on how the agent is doing and determines how the performanceCRITIC

element should be modified to do better in the future.
The design of the learning element depends very much on the design of the performance

element. When trying to design an agent that learns a certain capability, the first question is
not “How am I going to get it to learn this?” but “What kind of performance element will my
agent need to do this once it has learned how?” Given an agent design, learning mechanisms
can be constructed to improve every part of the agent.

The critic tells the learning element how well the agent is doing with respect to a fixed
performance standard. The critic is necessary because the percepts themselves provide no
indication of the agent’s success. For example, a chess program could receive a percept
indicating that it has checkmated its opponent, but it needs a performance standard to know
that this is a good thing; the percept itself does not say so. It is important that the performance
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Learning Agent 

• Performance element takes percepts; decides actions


• Critic gives feedback on how performance element is doing


• Learning element uses feedback to determine how performance 
element should be modified to do better in future


• Problem generator creates new tasks to provide new and 
informative experiences.
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Section 2.4. The Structure of Agents 55
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Figure2.15 A general learning agent.

He estimates how much work this might take and concludes “Some more expeditious method
seems desirable.” The method he proposes is to build learning machines and then to teach
them. In many areas of AI, this is now the preferred method for creating state-of-the-art
systems. Learning has another advantage, as we noted earlier: it allows the agent to operate
in initially unknown environments and to become more competent than its initial knowledge
alone might allow. In this section, we briefly introduce the main ideas of learning agents.
Throughout the book, we comment on opportunities and methods for learning in particular
kinds of agents. Part V goes into much more depth on the learning algorithms themselves.

A learning agent can be divided into four conceptual components, as shown in Fig-
ure 2.15. The most important distinction is between the learning element, which is re-LEARNINGELEMENT

sponsible for making improvements, and the performanceelement, which is responsible forPERFORMANCE
ELEMENT

selecting external actions. The performance element is what we have previously considered
to be the entire agent: it takes in percepts and decides on actions. The learning element uses
feedback from the critic on how the agent is doing and determines how the performanceCRITIC

element should be modified to do better in the future.
The design of the learning element depends very much on the design of the performance

element. When trying to design an agent that learns a certain capability, the first question is
not “How am I going to get it to learn this?” but “What kind of performance element will my
agent need to do this once it has learned how?” Given an agent design, learning mechanisms
can be constructed to improve every part of the agent.

The critic tells the learning element how well the agent is doing with respect to a fixed
performance standard. The critic is necessary because the percepts themselves provide no
indication of the agent’s success. For example, a chess program could receive a percept
indicating that it has checkmated its opponent, but it needs a performance standard to know
that this is a good thing; the percept itself does not say so. It is important that the performance



Learning Agent 
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Learning
• Learning is not a separate module, but rather a set of 

techniques for improving the existing modules 


• Learning is necessary because:


–  may be difficult or even impossible for a human to 
design all aspects of the system by hand 


– the agent may need to adapt to new situations without 
being re-programmed by a human 
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Summary
• Reactive agents respond directly to percepts 

• Model-based reflex agents maintain internal state to track 

aspects of the world that are not evident in the current 
percept


• Planning (Goal-based) agents act to achieve their goals

• Utility-based agents try to maximise expected “happiness.” 

• All agents can improve their performance through learning. 
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Representation and Search

• The world model must be represented in a way that 
makes reasoning easy.


• Reasoning (problem solving and planning) in AI almost 
always involves some kind of search amongst possible 
solutions.
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Layered Architecture 
• Hierarchy of controllers 

• Controller gets percepts from and sends 

commands to the lower layer 

–  Abstracts low level features into higher level 

(perception)

– Translates high level commands into actuator 

instructions (action) 

• Controllers have different representations, 

programs 

• Controllers operate at different time scales 

• Lower-level controller can override its commands 
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Example – Delivery Robot 
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Delivery Robot – Top Layer 
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Delivery Robot – Middle Layer 
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Delivery Robot – TR Code Example 
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goToTarget(target_pos):


arrived() or timeout() → {set arrived; stop;}


whisker_sensor = on → steer left;


straight_ahead(rob_pos, robot_dir, target_pos) → steer(straight);


left_of(rob_pos, robot_dir, target_pos) → steer(left);


true  → steer(right)

followPlan(to_do):


empty(to_do) → stop;


arrived() or timeout() →

{

	 resetTimer(200);

	 plan := rest(to_do);

}


true → goToTarget(coordinates(first(to_do));



Delivery Robot – Simulation 
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