
Agents
COMP3411/9814: 

Artificial Intelligence

1

Types of Agents

• Reactive Agent

• Model-Based Agent

• Planning Agent

• Utility-based agent

• Game Playing Agent

• Learning Agent

2

Agent Model

3

COMP3411/9414/ 19TO AI Tasks 3

Agent Model

UNSW c©Tatjana Zrimec, 2019

Reactive Agent

4

COMP9414/9814/3411 18s1 Agents 3

Reactive Agent

UNSW c©Alan Blair, 2013-18

Reactive Agent

• Choose the next action based only on what agent
currently perceives

• Uses a “policy” or set of rules that are simple to apply

• Sometimes called “simple reflex agents”

• but they can do surprisingly sophisticated things

5

Reactive Agent
repeat

if left touch:

backup

turn right

else if right touch:

backup

turn left

else
go straight

6

Reactive Agent

7

Reflex (reactive) agent — applies condition-action rules to each percept

Reactive Robots

8

Limitations of Reactive Agents

9

COMP9414/9814/3411 18s1 Agents 6

Limitations of Reactive Agents

Goal
Start

UNSW c©Alan Blair, 2013-18

10

botworld(512, 512,

	 [

	 	 box(1, 30, 50, 250, 55),

	 	 box(2, 290, 90, 310, 305),

	 	 beacon(1, 200, 250),

	 	 bar(1, 100, 150, 20),

	 	 bar(2, 200, 390, 275),

	 	 bar(3, 220, 100, 75),

	 	 bar(4, 380, 90, 20),

	 	 bar(5, 80, 80, 275),

	 	 bar(6, 60, 270, 75),

	 	 bar(7, 200, 340, 20),

	 	 bar(8, 120, 90, 275),

	 	 bar(9, 280, 250, 75),

	 	 bar(10, 120, 290, 40),

	 	 bar(11, 380, 290, 40),

	 	 bar(12, 220, 150, 40)

],

	 [

	 	 bot(1, "north"),

	 	 bot(2, "south"),

	 	 bot(3, "east"),

	 	 bot(4, "west")

]

);

11

def bot(myNum, side) =

{

	 var barNum = nearest_bar();

	 atBeacon(1, side) ->

	 	 {

	 	 	 say("At beacon");

	 	 	 turnTo(200, 250);

	 	 	 stop();

	 	 }

|

	 holding() and obstructedBeacon(1, side) -> find_opening(200)

|

	 holding() -> gotoBeacon(1, side)

|

	 gotoBar(barNum) ->

	 	 {

	 	 	 grab(barNum);

	 	 	 say("Found it");

	 	 }

|	 true ->

	 	 {

	 	 	 turn(random(-180, 180);

	 	 	 move(random(50, 300));

	 	 };

};

def find_opening(dist) =

	 obstructed_to(dist) -> turn(random(5, 15))

|

	 true -> move(random(0, dist))

;

Teleo-Reactive Program (TOP)

Limitations of Reactive Agents

• Reactive Agents have no memory or “state”

– unable to base decision on previous observations

–may repeat the same sequence of actions over and

over

– Escape from infinite loops is (sometimes) possible if

the agent can randomise its actions.
12

Model-Based Agent

13

COMP9414/9814/3411 18s1 Agents 9

Model-Based Agent

UNSW c©Alan Blair, 2013-18

Model-based Agents
• Handle partial observability by keeping track of the part of the

world it can’t see now.

• Maintain internal state that depends on the percept history and

remembers at least some of the unobserved aspects of the
current state.

• Knowledge about “how the world works” is called a model of the
world.

• An agent that uses such a model is called a model-based agent.

14

Model-based Reflex Agent

15

A model-based reflex agent. It keeps track of the current state of the world, using an
internal model. It then chooses an action in the same way as the reflex agent.

Model-based Reflex Agent

16

Limitations of Model-Based Agents
• An agent with a world model but no planning can look into the past, but

not into the future; it will perform poorly when the task requires any of the
following:

• searching several moves ahead

– Chess, Rubik’s cube

• complex tasks requiring many individual step

– cooking a meal, assembling a watch

• logical reasoning to achieve goals

– travel to New York

17
Sometimes we may need to plan several steps into the future

Planning Agent

18

Goal-Based Agent

COMP9414/9814/3411 18s1 Agents 13

Planning Agent

UNSW c©Alan Blair, 2013-18

Planning Agent
• Decision making of this kind is fundamentally different from the

condition–action rules

• It involves consideration of the future

– “What will happen if I do such-and-such?” and

– “Will that make me happy?”

In the reflex agent designs, this information is not explicitly represented,
because the built-in rules map directly from states to actions

19

Models and Planning

20

COMP9414/9814/3411 18s1 Agents 14

Models and Planning

UNSW c©Alan Blair, 2013-18

Reasoning about Future States
• What is the best action in this situation?

• Faking it

– Sometimes an agent may appear to be planning ahead but

is actually just applying reactive rules.

– These rules can be hand-coded, or learned from

experience.

– Agent may not be flexible enough to adapt to new

situations.

21

Planning Agent – Goal-based
• The planning agent or goal-based agent is more

flexible because the knowledge that supports its
decisions is represented explicitly and can be modified.

• The agent’s behaviour can easily be changed.

• But …

• it’s slower to react because it has to “think” about

what it’s doing.

22

Goal-based (teleological) agent

23

• State description often not sufficient for agent to decide what to do

• Needs to consider its goals (may involve searching and planning)

Planning usually needs search

24

@Home Robot

25

Utility-based agent
• A rational utility-based agent chooses the action that maximises the

expected utility of the action outcomes

– that is, the utility the agent expects to derive, on average, given the

probabilities and utilities of each outcome.

• The utility-based agent is not easy to implement

– It has to model and keep track of its environment

– Tasks involved a great deal of research on perception, representation,

reasoning, and learning.

– It can be implemented as a decision-making agent that must handle the

uncertainty inherent in stochastic or partially observable environments.

26

Utility-based agent
• Model-based, utility-based agent uses

• model of world

• utility function that measures

preferences among states of world

• Chooses action that leads to best

expected utility

• Expected utility is computed by

averaging over all possible outcome
states

• Weighted by probability of outcome.

27

Game Playing Agent

28

COMP9414/9814/3411 18s1 Agents 17

Game Playing Agent

UNSW c©Alan Blair, 2013-18

Learning Agent Section 2.4. The Structure of Agents 55

Performance standard

Agent

Environm
ent

Sensors

Performance
element

changes

knowledge
learning
 goals

Problem
generator

feedback

 Learning
element

Critic

Actuators

Figure2.15 A general learning agent.

He estimates how much work this might take and concludes “Some more expeditious method
seems desirable.” The method he proposes is to build learning machines and then to teach
them. In many areas of AI, this is now the preferred method for creating state-of-the-art
systems. Learning has another advantage, as we noted earlier: it allows the agent to operate
in initially unknown environments and to become more competent than its initial knowledge
alone might allow. In this section, we briefly introduce the main ideas of learning agents.
Throughout the book, we comment on opportunities and methods for learning in particular
kinds of agents. Part V goes into much more depth on the learning algorithms themselves.

A learning agent can be divided into four conceptual components, as shown in Fig-
ure 2.15. The most important distinction is between the learning element, which is re-LEARNINGELEMENT

sponsible for making improvements, and the performanceelement, which is responsible forPERFORMANCE
ELEMENT

selecting external actions. The performance element is what we have previously considered
to be the entire agent: it takes in percepts and decides on actions. The learning element uses
feedback from the critic on how the agent is doing and determines how the performanceCRITIC

element should be modified to do better in the future.
The design of the learning element depends very much on the design of the performance

element. When trying to design an agent that learns a certain capability, the first question is
not “How am I going to get it to learn this?” but “What kind of performance element will my
agent need to do this once it has learned how?” Given an agent design, learning mechanisms
can be constructed to improve every part of the agent.

The critic tells the learning element how well the agent is doing with respect to a fixed
performance standard. The critic is necessary because the percepts themselves provide no
indication of the agent’s success. For example, a chess program could receive a percept
indicating that it has checkmated its opponent, but it needs a performance standard to know
that this is a good thing; the percept itself does not say so. It is important that the performance

29

Learning Agent

• Performance element takes percepts; decides actions

• Critic gives feedback on how performance element is doing

• Learning element uses feedback to determine how performance
element should be modified to do better in future

• Problem generator creates new tasks to provide new and
informative experiences.

30

Section 2.4. The Structure of Agents 55

Performance standard

Agent

Environm
ent

Sensors

Performance
element

changes

knowledge
learning
 goals

Problem
generator

feedback

 Learning
element

Critic

Actuators

Figure2.15 A general learning agent.

He estimates how much work this might take and concludes “Some more expeditious method
seems desirable.” The method he proposes is to build learning machines and then to teach
them. In many areas of AI, this is now the preferred method for creating state-of-the-art
systems. Learning has another advantage, as we noted earlier: it allows the agent to operate
in initially unknown environments and to become more competent than its initial knowledge
alone might allow. In this section, we briefly introduce the main ideas of learning agents.
Throughout the book, we comment on opportunities and methods for learning in particular
kinds of agents. Part V goes into much more depth on the learning algorithms themselves.

A learning agent can be divided into four conceptual components, as shown in Fig-
ure 2.15. The most important distinction is between the learning element, which is re-LEARNINGELEMENT

sponsible for making improvements, and the performanceelement, which is responsible forPERFORMANCE
ELEMENT

selecting external actions. The performance element is what we have previously considered
to be the entire agent: it takes in percepts and decides on actions. The learning element uses
feedback from the critic on how the agent is doing and determines how the performanceCRITIC

element should be modified to do better in the future.
The design of the learning element depends very much on the design of the performance

element. When trying to design an agent that learns a certain capability, the first question is
not “How am I going to get it to learn this?” but “What kind of performance element will my
agent need to do this once it has learned how?” Given an agent design, learning mechanisms
can be constructed to improve every part of the agent.

The critic tells the learning element how well the agent is doing with respect to a fixed
performance standard. The critic is necessary because the percepts themselves provide no
indication of the agent’s success. For example, a chess program could receive a percept
indicating that it has checkmated its opponent, but it needs a performance standard to know
that this is a good thing; the percept itself does not say so. It is important that the performance

Learning Agent

31

COMP9414/9814/3411 18s1 Agents 18

Learning Agent

UNSW c©Alan Blair, 2013-18

Learning
• Learning is not a separate module, but rather a set of

techniques for improving the existing modules

• Learning is necessary because:

– may be difficult or even impossible for a human to
design all aspects of the system by hand

– the agent may need to adapt to new situations without
being re-programmed by a human

32

Summary
• Reactive agents respond directly to percepts

• Model-based reflex agents maintain internal state to track

aspects of the world that are not evident in the current
percept

• Planning (Goal-based) agents act to achieve their goals

• Utility-based agents try to maximise expected “happiness.”

• All agents can improve their performance through learning.

33

Representation and Search

• The world model must be represented in a way that
makes reasoning easy.

• Reasoning (problem solving and planning) in AI almost
always involves some kind of search amongst possible
solutions.

34

Layered Architecture
• Hierarchy of controllers

• Controller gets percepts from and sends

commands to the lower layer

– Abstracts low level features into higher level

(perception)

– Translates high level commands into actuator

instructions (action)

• Controllers have different representations,

programs

• Controllers operate at different time scales

• Lower-level controller can override its commands

35

Example – Delivery Robot

36

Delivery Robot – Top Layer

37

Delivery Robot – Middle Layer

38

Delivery Robot – TR Code Example

39

goToTarget(target_pos):

arrived() or timeout() → {set arrived; stop;}

whisker_sensor = on → steer left;

straight_ahead(rob_pos, robot_dir, target_pos) → steer(straight);

left_of(rob_pos, robot_dir, target_pos) → steer(left);

true → steer(right)

followPlan(to_do):

empty(to_do) → stop;

arrived() or timeout() →

{

	 resetTimer(200);

	 plan := rest(to_do);

}

true → goToTarget(coordinates(first(to_do));

Delivery Robot – Simulation

40

References

• Poole &Mackworth, Artificial Intelligence: Foundations
of Computational Agents, Chapter 1 & 2

• Russell & Norvig, Artificial Intelligence: a Modern Approach,
Chapter 2.

41

