
COMP3411 Tutorial - Week 3 
Search 

Question 1 
This exercise uses the route-finding example with the Romanian map from Russell & Norvig 
(Artificial Intelligence: A Modern Approach). 

 
For the route from Arad to Bucharest, what order are nodes in the state space expanded for 
each of the following algorithms when searching for the shortest path between Arad and 
Bucharest? Where there is a choice of nodes, take the first one by alphabetical ordering. Make 
sure you understand the key properties of the different algorithms, as listed below. 

1. Depth-first search (efficient use of space but may not terminate 

2. Breadth-first search (space inefficient, guaranteed to find a solution)  

3. Uniform-cost search (similar to breadth-first, but order nodes by cost) 

4. Iterative deepening depth-first search (space efficient, but repeated work)  

5. Greedy best-first search (efficient, not guaranteed optimal solution) 

6. A∗ search with straight-line distance heuristic (space inefficient, guaranteed 
optimal solution) 

For breadth-first search, stop the search when the goal state is generated and use a check to 
ensure that nodes with the same state as a previously expanded node are not added to the 
frontier. For the other search algorithms, stop the search when the goal state is expanded. For 
uniform-cost search include a check that nodes with the same state as a previously expanded 
nodes are not added to the frontier (as in breadth-first search) and a test so that only one node 
for a given state is stored on the frontier (that with the shortest path to that state), and for 
depth-first search use cycle checking along a path to avoid repeated states that may lead to 
infinite branches. 
Which algorithm is suitable in practice for solving route-finding problems such as this?  

COMP9414: Artificial Intelligence

Tutorial Week 3: Search

1. This exercise concerns the route-finding problem using the Romania map from Russell &
Norvig (Artificial Intelligence: A Modern Approach) as an example.

Bucharest

Giurgiu

Urziceni

Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj
Mehadia

Dobreta
Craiova

Sibiu

Fagaras

Pitesti
Rimnicu Vilcea

Vaslui

Iasi

Straight−line distance
to Bucharest

 0

160
242
161

77
151

241

366

193

178

253
329

80
199

244

380

226

234

374

98

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Define the route-finding problem (from Arad to Bucharest) as a state space search problem
(give short descriptions of the state space, etc. in English). What order are nodes in the
state space expanded for each of the following algorithms when searching for a (shortest)
path between Arad and Bucharest (when there is a choice of nodes, take the one earliest in
the alphabetical ordering)? Make sure you understand the key properties of the different
algorithms, as listed below.

To clarify, for breadth-first search, stop the search when the goal state is generated and use
a check to ensure that nodes with the same state as a previously expanded node are not
added to the frontier. For the other search algorithms, stop the search when the goal state
is expanded; for uniform-cost search include a check that nodes with the same state as a
previously expanded nodes are not added to the frontier (as in breadth-first search) and a
test so that only one node for a given state is stored on the frontier (that with the shortest
path to that state), and for depth-first search and its variants use cycle checking along a
path to avoid repeated states that may lead to infinite branches.

(i) Depth-first search (efficient use of space but may not terminate)

(ii) Breadth-first search (space inefficient, guaranteed to find a solution)

(iii) Uniform-cost search (similar to breadth-first, but order nodes by cost)

(iv) Iterative deepening depth-first search (space efficient, but repeated work)

(v) Greedy best-first search (efficient, not guaranteed optimal solution)

(vi) A∗ search with straight-line distance heuristic (inefficient, guaranteed optimal solution)

Which algorithm is suitable in practice for solving route-finding problems such as this?

2. This version of the map (from the first edition of the book) differs from that in the second
edition of the book in that the heuristic value for Fagaras is 178 rather than 176, and that for
Pitesti is 98 rather than 100 (also Drobeta is mistakenly spelt as Dobreta). What difference
does this make?

 1



Question 2
Suppose the heuristic value for Fagaras is 178 rather than 176, and the value for Pitesti is 98 
rather than 100. What difference does this make?

Question 3 - Heuristic Path Search 
Consider the task of finding a path from start state S to goal state G, given the distances and 
heuristic values in this diagram: 

For each of the following strategies, list the order in which the state are expanded. Whenever 
there is a choice of states, you should select the one that comes first in alphabetical order. In 
each case, you should skip any states that have previously been expanded, and you should 
continue the search until the goal node is expanded. 

1. Breadth First Search 

2. Depth First Search 

3. Uniform Cost Search  [Hint: first compute  for each state in the graph] 

4. Greedy Search, using the heuristic shown 

5. A*Search, using the heuristic shown 

Question 4 - Relationships Between Search Strategies  
Prove each of the following statements, or give a counterexample: 

1. Breadth First Search is a special case of Uniform Cost Search. 

2. Breadth First Search, Depth First Search and Uniform Cost Search are special cases 
of best-first search. 

3. Uniform Cost Search is a special case of A*Search.

 2



Question 5 - Heuristic Path Algorithm 
The heuristic path algorithm is a best-first search algorithm in which the objective function is:

, where  

What kind of search does this perform when ; when ; when ? 

For what values of w is the algorithm complete? For what values of w is it optimal, assuming 
h is admissible?

f (n) = (2 − w) ⋅ g(n) + w ⋅ h(n) 0 ≤ w ≤ 2

w = 0 w = 1 w = 2

 3


