COMP3411 Tutorial - Week 9 Neural Nets and ILP

Question 1

a) Construct by hand a Perceptron which correctly classifies the following data; use your knowledge of plane geometry to choose appropriate values for the weights w_0 , w_1 and w_2 .

Training Example	x_I	x ₂	Class
a.	0	1	-1
b.	2	0	-1
c.	1	1	+1

b) Demonstrate the Perceptron Learning Algorithm on the above data, using a learning rate of 1.0 and initial weight values of

 $w_0 = -0.5$ $w_1 = 0$ $w_2 = 1$

Question 2

Explain how each of the following could be constructed:

- 1. Perceptron to compute the OR function of *m* inputs Set the bias weight to $-\frac{1}{2}$, all other weights to 1.
- 2. Perceptron to compute the AND function of *n* inputs
- 3. 2-Layer Neural Network to compute any (given) logical expression, assuming it is written in Conjunctive Normal Form.

Question 3

a) Find the least general generalisation of the following terms:

f(g(a, b), [1, 2, [3, 4], 5], 1 + 2 * 3) f(g(a, h(x, y)), [1, 2, [3, 4, 5]], 1 + 6)

b) Find the least general generalisation of the following clauses:

q(f(a)) :- p(a, b), r(b, c), r(b, e). q(f(x)) :- p(x, y), r(y, z), r(w, z).