
COMP3411: Artificial Intelligence

First-Order Logic

C. Sammut & W. Wobcke

Propositional Logic

! Propositions built from ", #, $, %

! Sound, complete and decidable proof systems (inference procedures)

' Resolution refutation

' Prolog for special case of definite clauses

! Limited expressive power

' Cannot express relations and ontologies

! First-Order Logic can express knowledge about objects, properties

and relationships between objects

Applications of Logic and Theorem Proving

! Knowledge Representation of AI Systems

' Declarative and Working Memory for an intelligent agent

' Answering questions about state of the world

! Semantic Web

' Extension to World Wide Web

' Makes information on the web machine interpretable

! Formal Verification

' Used by chip designers to verify VLSI designs

' Proof assistants used in software verification

This Lecture

! First-Order Logic

' Syntax

' Semantics

! Automated Reasoning

' Conjunctive Normal Form

' First-order resolution and unification

' Soundness, completeness, decidability

Syntax of First-Order Logic

! Constant symbols: a, b, . . . , Mary (objects)

! Variables: x, y, . . .

! Function symbols: f , mother_of , sine, . . .

! Predicate symbols: Mother, likes, . . .

! Quantifiers: (&(universal);)&(existential)

Language of First-Order Logic

! Terms: constants, variables, functions applied to terms (refer to objects)

' e.g. a, f (a), mother_of (Mary), . . .

! Atomic formulae: predicates applied to tuples of terms

' e.g. likes(Mary, mother_of (Mary)), likes(x, a)

! Quantified formulae:

' e.g. (x likes(x, a),)x likes(x, mother_of (y))

' Second occurrences of x are bound by quantifier ((&in first case,)&in second)

and y in the second formula is free

Converting English into First-Order Logic

! Everyone likes lying on the beach — (x likes_lying_on_ beach(x)

! Someone likes Fido —)x likes(x, Fido)

! No one likes Fido — $*)x likes(x, Fido)) (or (x $likes(x, Fido))

! Fido doesn’t like everyone — $(x likes(Fido, x)

! All cats are mammals — (x (cat(x) % &mammal(x))

! Some mammals are carnivorous —)x (mammal(x) "&carnivorous(x))

! Note: (x A(x) +&$)x$A(x),)x A(x) +&$(x$A(x)

Universal Quantifiers

All men are mortal: (x (man(x) % &mortal(x))

! (x P is (almost) equivalent to the conjunction of instantiations of P

! (x (man(x) % &mortal(x)) +

(man(Alan) % &mortal(Alan))

"	 (man(Bill) % &mortal(Bill))

"	 (man(Colin) % &mortal(Colin))

"	 . . .

. . . only if every object (not only man) in the domain has a name

Existential Quantifiers

Some cats are immortal:)x (cat(x) "$mortal(x))

!)x P is (almost) equivalent to the disjunction of instantiations of P

!)x (cat(x) "$mortal(x)) +

(cat(Alan) "$mortal(Alan))

#	 (cat(Bill) "$mortal(Bill))

#	 (cat(Colin) "$mortal(Colin))

#	 . . .

. . . only if every object (not only cat) in the domain has a name

Nested Quantifiers

The order of quantification is very important

! Everything likes everything — (x (y likes(x, y) (or (y (x likes(x, y))

! Something likes something —)x)y likes(x, y) (or)y)x likes(x, y))

! Everything likes something — (x)y likes(x, y)

! There is something liked by everything —)y (x likes(x, y)

Defining Semantic Properties

Brothers are siblings

(x (y (brother(x, y) % &sibling(x, y))

“Sibling” is symmetric

(x (y (sibling(x, y) , &sibling(y, x))

One’s mother is one’s female parent

(x (y (mother(x, y) , &(female(x) "&parent(x, y))

A first cousin is a child of a parent’s sibling

(x (y (FirstCousin(x, y) ,)p)s parent(p, x) "&sibling(p, s) "&parent(s, y)

Scope Ambiguity

! Typical pattern for (&and)

' (x (type_of (x) % &predicate(x))

')x (type_of (x) "&predicate(x))

! Every student took an exam

' (x (student(x) % &)y (exam(y) "&took(x, y)))

')y (exam(y) "(x (student(x) % &took(x, y)))

Scope of Quantifiers

! The scope of a quantifier in a formula A is that subformula B of A of
which that quantifier is the main logical operator

! Variables belong to the innermost quantifier that mentions them

! Examples

' Q(x) % &(y P(x, y) — scope of (y is (y P(x, y)

' (z P(z) % &$Q(z) — scope of (z is (z P(z) but not Q(z)

')x (P(x) % &(x P(x))

' (x (P(x) % &Q(x)) % &((x P(x) % &(x Q(x))

Semantics of First-Order Logic

! An interpretation is required to give semantics to first-order logic.

! An interpretation is a non-empty “domain of discourse” (set of objects).  
The truth of any formula depends on the interpretation.

! The interpretation defines, for each

	 constant symbol	 an object in the domain

	 function symbol	 a function from domain tuples to the domain

	 predicate symbol	 a relation over the domain (a set of tuples)

! Then by definition

	 universal quantifier (x P(x) is True iff P(a) is True for all assignments

of domain elements a to x

	 existential quantifier ∃x P(x) is True iff P(a) is True for at least one

assignment of domain element a to x

Resolution for First-Order Logic 
(Alan Robinson, 1965)

! Based on resolution for Propositional Logic

! Extended syntax: allow variables and quantifiers

! Define “clausal form” for first-order logic formulae

! Eliminate quantifiers from clausal forms

! Adapt resolution procedure to cope with variables (unification)

Conversion to Conjunctive Normal Form

1. Eliminate implications and bi-implications as in propositional case

2. Move negations inward using De Morgan’s laws

' plus rewriting $(x P as)x $P and $)x P as (x $P

3. Eliminate double negations

4. Rename bound variables if necessary so each only occurs once

' e.g. (x P(x) #)x Q(x) becomes (x P(x) #)y Q(y)

5. Use equivalences to move quantifiers to the left

' e.g. (x P(x) "&Q becomes (x (P(x) "&Q) where x is not in Q

' e.g. (x P(x) ")y Q(y) becomes (x)y (P(x) "&Q(y))

Conversion to CNF – Continued

6. Skolemise (replace each existentially quantified variable by a new term)

')x P(x) becomes P(a0) using a Skolem constant a0 since)x occurs at the outermost level

' Any constant can represent the x, since it must be unique

' (x)y P(x, y) becomes P(x, f0(x)) using a Skolem function f0 since ∃y occurs within ∀x

' Y may depend on the choice of x, so y is a function of x

7. The formula now has only universal quantifiers and all are at the left of the formula: drop them

8. Use distribution laws to get CNF and then clausal form

∀x [∀y P(x, y) → ¬∀y (Q(x, y) → R(x, y))]

1. ∀x [¬∀y P(x, y) ∨¬∀y (¬Q(x, y) ∨ R(x, y))]	 Eliminate Implication

2, 3. ∀x [∃y ¬P(x, y) ∨∃y (Q(x, y) ∧¬R(x, y))]	 Move negation inward

4. ∀x [∃y ¬P(x, y) ∨∃z (Q(x, z) ∧¬R(x, z))]	 Rename variables

5. ∀x ∃y ∃z [¬P(x, y) ∨(Q(x, z) ∧¬R(x, z))]	 Move quantifiers left

6. ∀x [¬P(x, f (x)) ∨(Q(x, g(x)) ∧¬R(x, g(x)))]	 Replace ∃ vars by Skolem fns

7. ¬P(x, f (x)) ∨(Q(x, g(x)) ∧¬R(x, g(x)))	 Drop ∀

8. (¬P(x, f (x)) ∨ Q(x, g(x))) ∧(¬P(x, f (x)) ∨¬R(x, g(x)))	 Distribution laws to get CNF

8. {¬P(x, f (x)) ∨ Q(x, g(x)), ¬P(x, f (x)) ∨¬R(x, g(x))}	 Clausal form

Remember: (x P(x) +&$)x$P(x),)x P(x) +&$(x$P(x)PCNF: Example 1

CNF: Example 2

¬∃x ∀y ∀z ((P(y) ∨ Q(z)) → (P(x) ∨ Q(x)))

1. ¬∃x ∀y ∀z (¬(P(y) ∨ Q(z)) ∨ P(x) ∨ Q(x))	 Eliminate Implication

2. ∀x ¬∀y ∀z (¬(P(y) ∨ Q(z)) ∨ P(x) ∨ Q(x)) 	 Move negation inward

2. ∀x ∃y ¬∀z (¬(P(y) ∨ Q(z)) ∨ P(x) ∨ Q(x)) 	 Move negation inward

2. ∀x ∃y ∃z ¬(¬(P(y) ∨ Q(z)) ∨ P(x) ∨ Q(x)) 	 Move negation inward

2. ∀x ∃y ∃z ((P(y) ∨ Q(z)) ∧¬(P(x) ∨ Q(x))) 	 Move negation inward

6. ∀x ((P(f (x)) ∨ Q(g(x))) ∧¬P(x) ∧¬Q(x)) 	 Replace ∃ vars by Skolem fns

7. (P(f (x)) ∨ Q(g(x)) ∧¬P(x) ∧¬Q(x) 	 Drop ∀

8. {P(f (x)) ∨ Q(g(x)), ¬P(x), ¬Q(x)} 	 Clausal form

Unification

! A unifier of two atomic formulae is a substitution of terms for variables that makes
them identical

' Each variable has at most one associated term

' Substitutions are applied simultaneously

! Unifier of P(x, f (a), z) and P(z, z, u) : - x / f (a), z / f (a), u / f (a).

! Substitution σ1 is a more general unifier than a substitution σ2 if for some substitution 𝛕,

σ2 = σ1𝛕 (i.e. σ1 followed by 𝛕)

! Theorem. If two atomic formulae are unifiable, they have a most general unifier (mgu).

Examples

■ {P(x, a), P(b, c)} is not unifiable (where a, b, c are constants)

■ {P(f (x), y), P(a, w)} is not unifiable

■ {P(x, c), P(b, c)} is unifiable by {x /b}

■ {P(f (x), y), P(f (a), w)} is unifiable by 
σ = {x/a , y/w}, τ = {x/a , y/a, w/a}, υ = {x/a , y/b, w /b} 
Note that σ is an mgu and τ = σθ where θ = . . .?

■ {P(x), P(f (x))} is not unifiable (circular reference requires occurs check)

Unification Algorithm

Unify(Ψ1, Ψ2):	 // returns substitution or Failure
if Ψ1 or Ψ2 is a variable or constant, then:

if Ψ1 or Ψ2 are identical, then return NIL		 // unification succeeds but no substitution needed
else if Ψ1is a variable

then if Ψ1 occurs in Ψ2, then return Failure
else return {Ψ1 / Ψ2}

else if Ψ2 is a variable

if Ψ2 occurs in Ψ1 then return Failure
else return {Ψ2 / Ψ1}

else return Failure
if the predicate symbols of Ψ1 and Ψ2 are not same then return Failure
if Ψ1 and Ψ2 have a different number of arguments then return Failure
Set Substitution, SUBST to NIL
for i=1 to the number of elements in Ψ1:

S = Unify(Ψ1[i], Ψ2 [i])

if S = Failure then return Failure
if S ≠ NIL then

Apply S to the remainder of both Ψ1 and Ψ2

SUBST= APPEND(S, SUBST).

return SUBST

Unification Algorithm (alternative)

! The disagreement set of S: Find the leftmost position at which not all
members E of S have the same symbol.

! The set of subexpressions of each E in S that begin at this position is the

disagreement set of S.

! Algorithm

1. S0 = S, σ0 = - . , i = 0

2. If Si is not a singleton find its disagreement set Di, otherwise terminate

with σi as the most general unifier

3. If Di contains a variable vi and term ti such that vi does not occur in ti then

	 σi+1 = σ i-vi/t i.,	 Si+1 = Si-vi/t i.

&&&otherwise terminate as S is not unifiable

4. i = i + 1; resume from step 2

Examples

! S = - &f (x, g(x)), f (h(y), g(h(z))).

D0 = -x, h(y).&so σ1 = -x /h(y).

S1 = - &f (h(y), g(h(y))), f (h(y), g(h(z))).

D1 = -y, z.&so σ2 = -x/h(z), y /z.

S2 = - &f (h(z), g(h(z))), f (h(z), g(h(z))).

i.e. σ2 is an mgu

! S = - &f (h(x), g(x)), f (g(x), h(x)). (does an mgu exist for these?)

First-Order Resolution

A1 #/ / / &# &Am #&B $B 0&#C1 #/ / / &#Cn

(A1 #/ / / &# &Am #C1 #/ / / &#Cn)θ

where B, B0&are positive literals, Ai, Cj are literals, θ is an mgu of B and B0

! B and $B 0&are complementary literals

! (A1 #/ / / &# &Am #C1 #/ / / &#Cn)θ is the resolvent of the two clauses

! Special case: If no Ai and Cj , resolvent is empty clause, denoted , or □ ⊥

Applying Resolution Refutation

! Negate query to be proven (resolution is a refutation system)

! Convert knowledge base and negated query into CNF

! Repeatedly apply resolution to clauses or copies of clauses until either the empty clause
(contradiction) is derived or no more clauses can be derived (a copy of a clause is the
clause with all variables renamed)

! If the empty clause is derived, answer ‘true’ (query follows from knowledge base),
otherwise answer ‘false’ (query does not follow from knowledge base) . . . and if there are
an infinite number of clauses that can be derived, don’t answer at all

Resolution: Example 1

⊢ ∃x (P(x) → ∀x P(x))

CNF(¬∃x(P(x) → ∀xP(x)))

∀x ¬(¬P(x) ∨∀x P(x))	 [eliminate implication, move negation]

∀x (¬¬P(x) ∧¬∀x P(x))	 [move negation]

∀x (P(x) ∧∃x ¬P(x))	 	 [move negation, eliminate double negation]

∀x (P(x) ∧∃y ¬P(y))	 	 [rename variables]

∀x ∃y (P(x) ∧¬P(y))	 	 [move quantifiers left]

∀x (P(x) ∧¬P(f (x)))	 	 [Skolimse]

 P(x), ¬P(f (x))	 	 [Distribution]

1. P(x)	 [¬ Query]

2. ¬P(f (y))	 [Copy of ¬ Query, renaming variables]

3. ☐	 [1, 2 Resolution { x / f (y)}]

Resolution: Example 2

1&)x (y (z ((P(y) #&Q(z)) % &(P(x) #&Q(x)))

CNF

1. P(f (x)) #&Q(g(x))	 [$&Query]

2. $P(x) 	 [$&Query]

3. $Q(x) 	 [$&Query]

4. $P(y)	 [Copy of 2]

5. Q(g(x))	 [1, 4 Resolution -y / f (x).]

6. $Q(z)	 [Copy of 3]

7. ☐	 [5, 6 Resolution -z/g(x).]

≡ {P(f(x)) ∨ Q(g(x)), ¬P(x), ¬Q(x)}

Soundness and Completeness

For First-Order Logic

! Resolution refutation is sound, i.e. it preserves truth (if a set of premises

are all true, any conclusion drawn from those premises must also be true)

! Resolution refutation is complete, i.e. it is capable of proving all
consequences of any knowledge base (not shown here!)

! Resolution refutation is not decidable, i.e. there is no algorithm
implementing resolution which when asked whether S 1&P, can always
answer ‘true’ or ‘false’ (correctly)

Undecidability of First-Order Logic

! KB = -P(f (x)) % &P(x).

! Q = P(a)?

! Obviously

! However, now try to show this using resolution

KB ⊧ Q ~P(a)

x/a

~P(f(a))

x/f(a)

~P(f(f(a))

x/f(f(a))

~P(f(f(f(a)))

...

~P(f(x)) v P(x)	

Undecidability of First-Order Logic

! Can we determine in general when this problem will arise? No!

! There is no general procedure

if (KB unsatisfiable)

return true

else return false

! Resolution refutation is complete so if KB is unsatisfiable, the
search tree will contain the empty clause somewhere

! . . . but if the search tree does not contain the empty clause the
search may go on forever

! Even in the propositional case (which is decidable), complexity of
resolution is O(2n) for problems of size n

Horn Clauses

Use less expressive language

! Review

' literal – atomic formula or negation of atomic formula

' clause – disjunction of literals

! Definite Clause – exactly one positive literal

' e.g. B #$A1 # . . . #$An, i.e. B 2 &A1 " . . . "&An

! Negative Clause – no positive literals

' e.g. $Q1 #$Q2 (negation of a query)

! Horn Clause – clause with at most one positive literal

SLD Resolution — 1SLD

! Selected literals Linear form Definite clauses resolution

! SLD refutation of a clause C from a set of clauses KB is a sequence

1. First clause of sequence is C

2. Each intermediate clause Ci is derived by resolving the previous

clause Ci31 and a clause from KB

3. The last clause in the sequence is 4

! Theorem. For a definite KB and negative clause query Q: KB 5&Q 1&4&
if and only if KB 5&Q 1SLD 4

KB

C1

C2

☐

C

Prolog

! Horn clauses in First-Order Logic

! SLD resolution

! Depth-first search strategy with backtracking

! User control

' Ordering of clauses in Prolog database (facts and rules)

' Ordering of subgoals in body of a rule

! Prolog is a programming language based on resolution refutation
relying on the programmer to exploit search control rules

Prolog Example

p(X) :- q(X), r(X, Z), s(f(Z)).

q(X) :- r(X, Y), u(X).

s(f(X)) :- v(X).

r(a, b).

u(a).

v(b).

?- p(X)

X = a

Prolog Example

p(X1) :- q(X1), r(X1, Z), s(f(Z)).

q(X2) :- r(X2, Y), u(X2).

s(f(X3)) :- v(X3).

r(a, b).

u(a).

v(b).

?- p(X0)

X0 = a

Goal stack:

1. [p(X0)]

2. [q(X0), r(X0, Z), s(f(Z))]	 {X0/X1}

3. [r(a, b), u(a), r(a, b), s(f(b))]	 {X0/X1, X1/X2, X2/a, Y/b}

4. [u(a), r(a, b), s(f(b))] 		 {X0/X1, X1/X2, X2/a, Y/b}

5. [r(a, b), s(f(b))]. 		 {X0/X1, X1/X2, X2/a, Y/b}

6. [s(f(b))] 		 {X0/X1, X1/X2, X2/a, Y/b, Z/X3, X3/b}

7. [v(b)] 		 {X0/X1, X1/X2, X2/a, Y/b, Z/X3, X3/b}

8. []

X0/a

Z/b

Prolog Interpreter

Input: A query Q and a logic program KB

Output: ‘true’ if Q follows from KB, ‘false’ otherwise

Initialise current goal set to -Q .

while the current goal set is not empty do

Choose G from the current goal set (first in goal set)

Choose a copy G0&:- B1,..., Bn of a rule from KB for which most general unifier of

G, G0&is θ (try all in KB)

(if no such rule, undo unifications and try alternative rules) Apply θ to the current
goal set

Replace Gθ by B1θ,..., Bnθ in current goal set

if current goal set is empty

output true

else output false

! Depth-first, left-right with backtracking

Inefficient	and	not	how	a	
real	Prolog	interpreter	works

Negation as Failure

! Prolog does not implement classical negation

! Prolog \+ is known as negation as failure

! KB 1&\+ G	 — KB cannot prove G

! KB 1&$G	 — can prove $G

! Negation as failure is finite failure

Soundness and Completeness Again

! Prolog including negation as failure is not sound, i.e. it does not preserve truth

! Pure Prolog (without negation as failure) is not complete, i.e. it is incapable of
proving all consequences of any knowledge base (this is because of the search order)

! Even pure Prolog is not decidable, i.e. the Prolog implementation of resolution when
asked whether KB 1&Q, can not always answer ‘true’ or ‘false’ (correctly)

Conclusion

! First-order logic can express objects, properties of objects and relationships
between objects, and allows quantification over variables

! First-order logic is highly expressive

! Resolution refutation is sound and complete, but not decidable

! Prolog is more programming language than theorem prover

! Gödel’s incompleteness theorem

' Any first-order logic system with Peano’s axioms for arithmetic cannot be

both consistent and prove all true statements (where statements are encoded
using numbers)

