COMP3411: Artificial Intelligence
First-Order Logic

C. Sammut & W. Wobcke

Propositional Logic

Propositions built from A, V, 7, -

Sound, complete and decidable proof systems (inference procedures)
Resolution refutation

Prolog for special case of definite clauses

Limited expressive power

Cannot express relations and ontologies

First-Order Logic can express knowledge about objects, properties
and relationships between objects

Applications of Logic and Theorem Proving

Knowledge Representation of AI Systems
Declarative and Working Memory for an intelligent agent

Answering questions about state of the world

Semantic Web
Extension to World Wide Web

Makes information on the web machine interpretable

Formal Verification
Used by chip designers to verify VLSI designs

Proof assistants used in software verification

This Lecture

First-Order Logic
Syntax

Semantics

Automated Reasoning
Conjunctive Normal Form
First-order resolution and unification

Soundness, completeness, decidability

Syntax of First-Order Logic

Constant symbols: a, b, ..., Mary (objects)
Variables: x, y, . ..
Functionsymbols: f, mother of, sine, . . .

Predicate symbols: Mother, likes, . ..

Quantifiers: V (universal); 3 (existential)

Language of First-Order Logic

Terms: constants, variables, functions applied to terms (refer to objects)
e.g. a, f(a), mother of(Mary), ...

Atomic formulae: predicates applied to tuples of terms
e.g. likes(Mary, mother of (Mary)), likes(x, a)

Quantified formulae:

e.g. Vx likes(x, a), x likes(x, mother of (v))

Second occurrences of x are bound by quantifier (V in first case, 3 in second)

and y in the second formula is free

Converting English into First-Order Logic

Everyone likes lying on the beach — Vx likes lying on beach(x)
Someone likes Fido — 3dx likes(x, Fido)

No one likes Fido — =(3dx likes(x, Fido)) (or Vx 7likes(x, Fido))
Fido doesn’t like everyone — ~Vx likes(Fido, x)

All cats are mammals — Vx(cat(x) > mammal(x))

Some mammals are carnivorous — x(mammal(x) A carnivorous(x))

Note: VxA(x) & 7dx74(x), IxA(x) © Vx4 (x)

Universal Quantifiers

All men are mortal: Vx (man(x) - mortal(x))
Vx P is (almost) equivalent to the conjunction of instantiations of P
Vx(man(x) > mortal(x)) &

(man(Alan) - mortal(Alan))

A (man(Bill) —» mortal(Bill))
A (man(Colin) - mortal(Colin))
N

... only if every object (not only man) in the domain has a name

Existential Quantifiers

Some cats are immortal: dx (cat(x) A"mortal(x))
Jx P is (almost) equivalent to the disjunction of instantiations of P
dx(cat(x) A"mortal(x)) &

(cat(Alan) A" mortal(Alan))

Y% (cat(Bill) N~ mortal(Bill))
Y% (cat(Colin) N"mortal(Colin))
Vv

... only if every object (not only cat) in the domain has a name

Nested Quantifiers

The order of quantification i1s very important
Everything likes everything — Vx Vy likes(x, y) (or Yy Vx likes(x, v))
Something likes something — 3x 3y likes(x, y) (or dy Ix likes(x, y))
Everything likes something — Vx Jy likes(x, y)

There is something liked by everything — 3y Vx likes(x, y)

Defining Semantic Properties

Brothers are siblings

VxVy(brother(x, y) » sibling(x, y))

“Sibling” 1s symmetric

Vx Yy (sibling(x, y) < sibling(y, x))

One’s mother 1s one’s female parent
VxVy(mother(x, y) <« (female(x) A\ parent(x, y))
A first cousin is a child of a parent’s sibling

VxVy(FirstCousin(x, y) « dpds parent(p, x) A sibling(p, s) A parent(s, y)

Scope Ambiguity

Typical pattern for V and 3
Vx(type of(x) » predicate(x))
dx(type of (x) A predicate(x))

Every student took an exam
Vx(student(x) -» Iy (exam(y) A took(x, y)))
dy(exam(y) AV x (student(x) > took(x, y)))

Scope of Quantifiers

The scope of a quantifier in a formula A4 1s that subformula B of 4 of
which that quantifier is the main logical operator

Variables belong to the innermost quantifier that mentions them
Examples
O(x) » VyP(x, y) — scope of Vyis VyP(x, y)
VzP(z) > 7Q(z) — scope of Vz is VzP(z) but not O(z)
Ix(P(x) > VxP(x))
Vx(P(x) - O(x)) = (VxP(x) > Vx0(x))

Semantics of First-Order Logic

An interpretation is required to give semantics to first-order logic.

An interpretation is a non-empty “domain of discourse” (set of objects).
The truth of any formula depends on the interpretation.

The interpretation defines, for each
constant symbol an object in the domain
function symbol a function from domain tuples to the domain

predicate symbol a relation over the domain (a set of tuples)

Then by definition
universal quantifier Vx P(x) is True iff P(a) is True for all assignments
of domain elements a to x
existential quantifier dx P(x) is True iff P(a) is True for at Iecast one

assignment of domain element a to x

Resolution for First-Order Logic
(Alan Robinson, 1965)

Based on resolution for Propositional Logic
Extended syntax: allow variables and quantifiers
Define “clausal form™ for first-order logic formulae
Eliminate quantifiers from clausal forms

Adapt resolution procedure to cope with variables (unification)

Conversion to Conjunctive Normal Form

1. Eliminate implications and bi-implications as in propositional case
2. Move negations inward using De Morgan’s laws
plus rewriting 7Vx P as dx7P and 7dx P as Vx P
3. Eliminate double negations
4. Rename bound variables if necessary so each only occurs once
e.g. VxP(x)Vdx O(x) becomes VxP(x)vVIy O(y)
5. Use equivalences to move quantifiers to the left
e.g. VxP(x) A O becomes Vx(P(x) A Q) where x is not in O
e.g. VxP(x)Ady O(y) becomes Vx Iy (P(x) A O(y))

Conversion to CNF — Continued

6. Skolemise (replace each existentially quantified variable by a new term)

dx P(x) becomes P(ao) using a Skolem constant ap since Jx occurs at the outermost level

Any constant can represent the x, since it must be unique

Vx dy P(x, y) becomes P(x, fo(x)) using a Skolem function fj since dy occurs within Vx

Y may depend on the choice of x, so y is a function of x

7. The formula now has only universal quantifiers and all are at the left of the formula: drop them

8. Use distribution laws to get CNF and then clausal form

PCNF: Example 1

Vx[VyP(x, y) — ~Vy(O(x, y) = R(x, y))]

1. Vx[=VyP(x, y) v=Vy (=0(x, y) v R(x, y))]

2,3. Vx[Ay=P(x, y) vAy (O(x, y) A7R(x, ¥))]

4. Vx[Iy—P(x, ») vAz (O(x, z) A=R(x, z))]

5. Vx3y3z[~P(x, y) v(O(x, z) A—R(x, 2))]

6. Vx[~P(x, f(x)) v(O(x, g(x)) A—R(x, g(x)))]

7. =P(x, f(x)) v(Q(x, g(x)) A7R(x, g(x)))

8. (TP(x, f(x)) v Ox, g(x))) A(TP(x, f(x)) v7R(x, g(x)))
8. {=P(x, f(x)) v O(x, g(x)), ~P(x, f(x)) v"R(x, g(x))}

Remember: VxP(x) < 73dx7P(x), IxP(x) & 7Vx7P(x)

Eliminate Implication

Move negation inward
Rename variables

Move quantifiers left
Replace 3 vars by Skolem fns
Drop V

Distribution laws to get CNF

Clausal form

CNF: Example 2

—dx Vy Vz ((P(y) v Q(2)) — (P(x) v Q(x)))
L =3x Vy Vz (=(P(y) v Q(2)) v P(x) v Q(x))
2. Vx =Vy Vz (=(P(y) v Q(2)) v P(x) v Q(x))
2.Vx 3y ~Vz (=(P(y) v Q(2)) v P(x) v Q(x))
2.Vx dy 3z ~(=(P(y) v Q(2)) v P(x) v Q(x))
2. Vx dy 3z ((P(y) v Q(2)) A~(P(x) v Q(x)))
6. Vx ((P(f (x)) v Q(g(x))) A~P(x) A~Q(x))
7. (P (x)) v Q(g(x)) A~P(x) A~Q(x)

8. {P(t(x)) v Q(g(x)), "P(x), ~Q(x)}

Eliminate Implication

Move negation inward

Move negation inward

Move negation inward

Move negation inward
Replace d vars by Skolem fns
Drop V

Clausal form

Unification

A unifier of two atomic formulae is a substitution of terms for variables that makes
them identical

Each variable has at most one associated term

Substitutions are applied simultaneously

Unifier of P(x, f(a), z) and P(z, z, u) : {x [f(a), z [f(a), u | f(a)}

Substitution 07 is a more general unifier than a substitution 07 if for some substitution T,

0,= 0;7 (i.e. 0; followed by 7)

Theorem. If two atomic formulae are unifiable, they have a most general unifier (mgu).

Examples
{P(x,a), P(b,c)} 1s not unifiable (where a, b, ¢ are constants)
{P(f(x), v), P(a,w)} 1s not unifiable
{P(x,c), P(b, ¢)} is unifiable by {x/b}
{P(f(x),), P(f(a),w)} is unifiable by

c= {x/a,y/w}, 1= {x/a,yla,w/a},v= {x/a, y/b, w/b}
Note that o 1s an mgu and t = 60 where 0 =. . .7

{P(x), P(f(x))} is not unifiable (circular reference requires occurs check)

Unification Algorithm

Unify(Wy, W>): // returns substitution or Failure
if W, or W is a variable or constant, then:
if W, or W are identical, then return NIL // unification succeeds but no substitution needed

else if Wis a variable
then if W, occurs in W5, then return Failure
else return {W,/ W,}
else if W, is a variable
if W, occurs in W, then return Failure
else return {W,/ W}
else return Failure
if the predicate symbols of W and W> are not same then return Failure
if W1 and W> have a different number of arguments then return Failure
Set Substitution, SUBST to NIL
for i=1 to the number of elements in W;.
S = Unify(Wi[i], W2 [i])
if S = Failure then return Failure
if S # NIL then
Apply S to the remainder of both W and W»
SUBST= APPEND(S, SUBST).
return SUBST

Unification Algorithm (alternative)

The disagreement set of S: Find the leftmost position at which not all
members £ of S have the same symbol.
The set of subexpressions of each £ in § that begin at this position is the
disagreement set of S.

Algorithm
1.S0=S,00={},i=0

2. If Si1s not a singleton find its disagreement set D;, otherwise terminate
with 0;as the most general unifier

3. If D, contains a variable v; and term ¢ such that v; does not occur in ¢ then
Oi+1 = O'i{Vi/ti}, Si+1 = Si{v,-/tl-}
otherwise terminate as S 1s not unifiable

4.i= i+ 1; resume from step 2

Examples

§={/lx,gx)), f(h(y),g((2)))}

Do = {x,h(y)} so 01 = {x/h(y)}

S1= {/(h(y).g(h(»))), f(h(y),g(h(z)))}
D= {y,z} so 02 = {x/h(z),y/z}

S2 = { f(h(z),g(h(2))), f(h(2),&(h(2)))}

l.e. 0218 an mgu

S={f(h(x),g(x)), f(g(x),h(x))} (does an mgu exist for these?)

First-Order Resolution

AV VA,VB B VC V- V(C,

(41V---VA,VCiV---V(C,)0
where B, B’ are positive literals, 4;, C; are literals, 0 is an mgu of B and B’
B and 7B’ are complementary literals

(41V--VA,VCiV---V(C,)0 is the resolvent of the two clauses

Special case: If no 4;and C; , resolvent is empty clause, denoted [_], or L

Applying Resolution Refutation

Negate query to be proven (resolution is a refutation system)

Convert knowledge base and negated query into CNF

Repeatedly apply resolution to clauses or copies of clauses until either the empty clause
(contradiction) is derived or no more clauses can be derived (a copy of a clause is the
clause with all variables renamed)

If the empty clause is derived, answer ‘true’ (query follows from knowledge base),
otherwise answer ‘false’ (query does not follow from knowledge base) ... and if there are
an infinite number of clauses that can be derived, don’t answer at all

Resolution: Example 1
F dx(P(x) — VxP(x))

CNF(—3x(P(x) — VxP(x)))

Vx—(—P(x) vVxP(x)) [eliminate implication, move negation]
Vx(—P(x) A=V x P(x)) [move negation]

Vx(P(x) Adx—P(x)) [move negation, eliminate double negation]
Vx(P(x)ady —=P(»)) [rename variables]

Vx3dy(P(x) A—P(y)) [move quantifiers left]
Vx(P(x)A—P(f(x))) [Skolimse]

P(x), ~P(f(x)) [Distribution]

1.P(x) [~ Query]
2.7P(f(y)) [Copy of — Query, renaming variables]
3.0 [I1,2 Resolution {x/f(y)}]

Resolution: Example 2

= Vyvz((P(r)V O(z)) » (P(x)V O(x)))
CNF = {P(f(x)) vV Q(g(x)), 7P(x), 7 O(x)}

. P(f(x))V O(g(x))

P(x)

. 70(x)
. P(y)
. O(g(x))
. 70(2)

]

d
®)
c
Q
g 38

|

|

[™ Query]
[Copy of 2]
[1, 4 Resolution {y/f(x)}]
[Copy of 3]

[5, 6 Resolution {z/g(x)}]

Soundness and Completeness

For First-Order Logic

Resolution refutation is sound, 1.e. it preserves truth (if a set of premises
are all true, any conclusion drawn from those premisesmust also be true)

Resolution refutation is complete, 1.€. it is capable of proving all
consequences of any knowledge base (not shown here!)

Resolution refutation is not decidable, i.e. there is no algorithm
implementing resolution which when asked whether S + P, can always

answer ‘true’ or ‘false’ (correctly)

Undecidability of First-Order Logic

KB = {P(f(x))~> P(x)}
O = P(a)?
Obviously KB F Q

However, now try to show this using resolution

~P(f(x)) v P(x)

~P(a)

~P(f(a))

x/a

x/f(a)

<P(f(f(a))

x/(f(a))

~P(f(f(f(a)))

Undecidability of First-Order Logic

Can we determine in general when this problem will arise? No!

There 1s no general procedure

if (KB unsatisfiable)
return true
else return false

Resolution refutation is complete so if KB 1s unsatisfiable, the

search tree will contain the empty clause somewhere

... but if the search tree does not contain the empty clause the
search may go on forever

Even 1n the propositional case (which is decidable), complexity of
resolution is O(2”) for problems of size n

Horn Clauses

Use less expressive language

Review
literal — atomic formula or negation of atomic formula

clause — disjunction of literals
Definite Clause — exactly one positive literal
e.g. BV4AV...V4,,1.e. B« Ai1N... A,
Negative Clause — no positive literals
e.g. 701 V10, (negation of a query)

Horn Clause — clause with at most one positive literal

SLD Resolution — ~g;p

Selected literals Linear form Definite clauses resolution

SLD refutation of a clause C from a set of clauses KB 1s a sequence
1. First clause of sequence 1s C
2. Each intermediate clause C;is derived by resolving the previous

clause C;-1 and a clause fromKRB

3. The last clause in the sequence is [

Theorem. For a definite KB and negative clause query Q: KBU QO+ [
if and only if KBU Q +s1p O

Prolog

Horn clauses in First-Order Logic
SLD resolution
Depth-first search strategy with backtracking

User control
Ordering of clauses in Prolog database (facts and rules)

Ordering of subgoals in body of a rule

Prolog is a programming language based on resolution refutation
relying on the programmer to exploit search control rules

Prolog Example

p(X) Ol q(X)l r(XI Z)l S(f(Z)).
q(X) Ol r(XI Y)l U.(X).
s(f(X)) :- v(X).

r(a, b).
u(a).
v(b).

2= p(X)
X = a

Prolog Example

p(X1l) :- q(X1), (X1, Z), S(f(Z)) -

q(X2) :- r(X2, Y), u(X2).

s(£(X3)) :- v(X3).

r(a, b). Goal stack: <0/

u(a).

v(b). 1. [p(XO0)]
2. [q(X0),1(X0,27),s(fZ))] {XO/X1}

:{5 E(zo) 3. [r(a, b), u(a). r(a, b), s(F(b))] X0/X1, X1/X2, X2/al, Y/b}
4. [u(a), r(a, b), s(f(b))] (XO/X1, X1/X2.X2/a,Y/b} 71
5. [r(a, b), s(f(b))]. (X0/X1, X1/X2, X2/a, Y/b} /
6. [s(f(b))] (X0/X1, X1/X2, X2/a, Y/b,Z/X3, X3/b}
7. [v(b)] (X0/X1, X1/X2, X2/a, Y/b, Z/X3, X3/b}
8. []

Prolog Interpreter

Input: A query Q and a logic program KB
Output: ‘true’ if QO follows from KB, ‘false’ otherwise
Initialise current goal set to { O}
while the current goal set is not empty do
Choose G from the current goal set (first in goal set)
[Choose acopy G :- Bi,..., Byofarule from KB for which most general unifier of]
G, G'is O (try all in KB)
(if no such rule, undo unifications and try alternative rules) Apply O to the current

goal set
Replace GO by B16,...,B,0 in current goal set

if current goal set 1S empty Inefficient and not how a
output true real Prolog interpreter works

else output false

Depth-first, left-right with backtracking

Negation as Failure

Prolog does not implement classical negation

Prolog \+ is known as negation as failure
KB +\+ G — KB cannot prove G
KB +-7G — can prove G

Negation as failure is finite failure

Soundness and Completeness Again

Prolog including negation as failure 1s not sound, 1.e. it does not preserve truth

Pure Prolog (without negation as failure) is not complete, i.e. it is incapable of
proving all consequences of any knowledge base (this 1s because of the search order)

Even pure Prolog is not decidable, i.e. the Prolog implementation of resolution when

asked whether KB + O, can not always answer ‘true’ or ‘false’ (correctly)

Conclusion

First-order logic can express objects, properties of objects and relationships
between objects, and allows quantification over variables

First-order logic is highly expressive
Resolution refutation is sound and complete, but not decidable
Prolog 1s more programming language than theorem prover

Godel’s incompleteness theorem
Any first-order logic system with Peano’s axioms for arithmetic cannot be
both consistent and prove all true statements (where statements are encoded
using numbers)

