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Propositional Logic 

! Propositions built from ", #, $, % &

! Sound, complete and decidable proof systems (inference procedures) 
' Resolution refutation 
' Prolog for special case of definite clauses 

! Limited expressive power 
' Cannot express relations and ontologies 
! First-Order Logic can express knowledge about objects, properties  

and relationships between objects



Applications of Logic and Theorem Proving 

! Knowledge Representation of AI Systems 
' Declarative and Working Memory for an intelligent agent 
' Answering questions about state of the world 

! Semantic Web 
' Extension to World Wide Web 
' Makes information on the web machine interpretable 

! Formal Verification 
' Used by chip designers to verify VLSI designs 
' Proof assistants used in software verification



This Lecture 

! First-Order Logic 
' Syntax 
' Semantics 

! Automated Reasoning 
' Conjunctive Normal Form 
' First-order resolution and unification 
' Soundness, completeness, decidability



Syntax of First-Order Logic

! Constant symbols: a, b, . . . , Mary (objects) 

! Variables: x, y, . . . 

! Function symbols: f , mother_of , sine, . . . 

! Predicate symbols: Mother, likes, . . . 

! Quantifiers: (&(universal); )&(existential)



Language of First-Order Logic 

! Terms: constants, variables, functions applied to terms (refer to  objects) 

' e.g. a, f (a), mother_of (Mary), . . . 

! Atomic formulae: predicates applied to tuples of terms 
' e.g. likes(Mary, mother_of (Mary)), likes(x, a) 

! Quantified formulae: 

' e.g. (x likes(x, a), )x likes(x, mother_of (y)) 
' Second occurrences of x are bound by quantifier ((&in  first case, )&in second) 

and y in the second formula is free



Converting English into First-Order Logic

! Everyone likes lying on the beach — (x likes_lying_on_ beach(x) 

! Someone likes Fido — )x likes(x, Fido) 

! No one likes Fido — $*)x likes(x, Fido)) (or (x $likes(x, Fido)) 

! Fido doesn’t like everyone — $(x likes(Fido, x) 

! All cats are mammals — (x (cat(x) % &mammal(x)) 

! Some mammals are carnivorous — )x (mammal(x) "&carnivorous(x)) 

! Note: (x A(x) +&$)x$A(x), )x A(x) +&$(x$A(x)



Universal Quantifiers 

All men are mortal: (x (man(x) % &mortal(x)) 

! (x P is (almost) equivalent to the conjunction of instantiations of P 

! (x (man(x) % &mortal(x)) +&

(man(Alan) % &mortal(Alan)) 

"& (man(Bill) % &mortal(Bill)) 

"& (man(Colin) % &mortal(Colin)) 

"& . . . 

. . . only if every object (not only man) in the domain has a name



Existential Quantifiers 

Some cats are immortal: )x (cat(x) "$mortal(x)) 

! )x P is (almost) equivalent to the disjunction of instantiations of P 

! )x (cat(x) "$mortal(x)) +&

(cat(Alan) "$mortal(Alan)) 

#& (cat(Bill) "$mortal(Bill)) 

#& (cat(Colin) "$mortal(Colin)) 

#& . . . 

. . . only if every object (not only cat) in the domain has a name



Nested Quantifiers 

The order of quantification is very important 

! Everything likes everything — (x (y likes(x, y) (or (y (x likes(x, y)) 

! Something likes something — )x )y likes(x, y) (or )y )x likes(x, y)) 

! Everything likes something — (x )y likes(x, y) 

! There is something liked by everything — )y (x likes(x, y)



Defining Semantic Properties 

Brothers are siblings 

(x (y (brother(x, y) % &sibling(x, y)) 

“Sibling” is symmetric 

(x (y (sibling(x, y) , &sibling(y, x)) 

One’s mother is one’s female parent 

(x (y (mother(x, y) , &(female(x) "&parent(x, y)) 

A first cousin is a child of a parent’s sibling 

(x (y (FirstCousin(x, y) , )p )s parent(p, x) "&sibling(p, s) "&parent(s, y)



Scope Ambiguity 

! Typical pattern for (&and )&
' (x (type_of (x) % &predicate(x)) 

' )x (type_of (x) "&predicate(x)) 

! Every student took an exam 

' (x (student(x) % &)y (exam(y) "&took(x, y))) 

' )y (exam(y) "(x (student(x) % &took(x, y)))



Scope of Quantifiers

! The scope of a quantifier in a formula A is that subformula B of A of  
which that quantifier is the main logical operator 

! Variables belong to the innermost quantifier that mentions them 

! Examples 

' Q(x) % &(y P(x, y) — scope of (y is (y P(x, y) 

' (z P(z) % &$Q(z) — scope of (z is (z P(z) but not Q(z) 

' )x (P(x) % &(x P(x)) 

' (x (P(x) % &Q(x)) % &((x P(x) % &(x Q(x))



Semantics of First-Order Logic 

! An interpretation is required to give semantics to first-order logic. 

! An interpretation is a non-empty “domain of discourse” (set of objects).  
The truth of any formula depends on the interpretation. 

! The interpretation defines, for each 
 constant symbol an object in the domain 
 function symbol a function from domain tuples to the domain 
 predicate symbol a relation over the domain (a set of tuples) 

! Then by definition 
 universal quantifier (x P(x) is True iff P(a) is True for all  assignments 

of domain elements a to x 
 existential quantifier ∃x P(x) is True iff P(a) is True for at least one  

assignment of domain element a to x



Resolution for First-Order Logic 
(Alan Robinson, 1965)

! Based on resolution for Propositional Logic 

! Extended syntax: allow variables and quantifiers 

! Define “clausal form” for first-order logic formulae 

! Eliminate quantifiers from clausal forms 

! Adapt resolution procedure to cope with variables (unification)



Conversion to Conjunctive Normal Form 

1. Eliminate implications and bi-implications as in propositional case 

2. Move negations inward using De Morgan’s laws 

' plus rewriting $(x P as )x $P and $)x P as (x $P 

3. Eliminate double negations 

4. Rename bound variables if necessary so each only occurs once 

' e.g. (x P(x) #)x Q(x) becomes (x P(x) #)y Q(y) 

5. Use equivalences to move quantifiers to the left 

' e.g. (x P(x) "&Q becomes (x (P(x) "&Q) where x is not in Q 

' e.g. (x P(x) ")y Q(y) becomes (x )y (P(x) "&Q(y))



Conversion to CNF – Continued 

6. Skolemise (replace each existentially quantified variable by a new term) 

' )x P(x) becomes P(a0) using a Skolem constant a0 since )x occurs at the outermost level 

' Any constant can represent the x, since it must be unique 

' (x )y P(x, y) becomes P(x, f0(x)) using a Skolem function f0 since ∃y occurs within ∀x 

' Y may depend on the choice of x, so y is a function of x 

7. The formula now has only universal quantifiers and all are at the left of the formula: drop them 

8. Use distribution laws to get CNF and then clausal form



∀x [∀y P(x, y) →  ¬∀y (Q(x, y) →  R(x, y))] 

1. ∀x [¬∀y P(x, y) ∨¬∀y (¬Q(x, y) ∨  R(x, y))] Eliminate Implication 

2, 3. ∀x [∃y ¬P(x, y) ∨∃y (Q(x, y) ∧¬R(x, y))] Move negation inward 

4. ∀x [∃y ¬P(x, y) ∨∃z (Q(x, z) ∧¬R(x, z))] Rename variables 

5. ∀x ∃y ∃z [¬P(x, y) ∨(Q(x, z) ∧¬R(x, z))] Move quantifiers left 

6. ∀x [¬P(x, f (x)) ∨(Q(x, g(x)) ∧¬R(x, g(x)))] Replace ∃ vars by Skolem fns 

7. ¬P(x, f (x)) ∨(Q(x, g(x)) ∧¬R(x, g(x))) Drop ∀  

8. (¬P(x, f (x)) ∨  Q(x, g(x))) ∧(¬P(x, f (x)) ∨¬R(x, g(x))) Distribution laws to get CNF 

8. {¬P(x, f (x)) ∨  Q(x, g(x)), ¬P(x, f (x)) ∨¬R(x, g(x))} Clausal form

Remember: (x P(x) +&$)x$P(x), )x P(x) +&$(x$P(x)PCNF: Example 1



CNF: Example 2 

¬∃x ∀y ∀z ((P(y) ∨ Q(z)) → (P(x) ∨ Q(x))) 

1. ¬∃x ∀y ∀z (¬(P(y) ∨ Q(z)) ∨ P(x) ∨ Q(x)) Eliminate Implication 

2. ∀x ¬∀y ∀z (¬(P(y) ∨ Q(z)) ∨ P(x) ∨ Q(x))  Move negation inward 

2. ∀x ∃y ¬∀z (¬(P(y) ∨ Q(z)) ∨ P(x) ∨ Q(x))  Move negation inward 

2. ∀x ∃y ∃z ¬(¬(P(y) ∨ Q(z)) ∨ P(x) ∨ Q(x))  Move negation inward 

2. ∀x ∃y ∃z ((P(y) ∨ Q(z)) ∧¬(P(x) ∨ Q(x)))  Move negation inward 

6. ∀x ((P(f (x)) ∨ Q(g(x))) ∧¬P(x) ∧¬Q(x))  Replace ∃ vars by Skolem fns 

7. (P(f (x)) ∨ Q(g(x)) ∧¬P(x) ∧¬Q(x)  Drop ∀ 

8. {P(f (x)) ∨ Q(g(x)), ¬P(x), ¬Q(x)}  Clausal form



Unification 

! A unifier of two atomic formulae is a substitution of terms for variables that makes 
them identical 

' Each variable has at most one associated term 
' Substitutions are applied simultaneously 

! Unifier of P(x, f (a), z) and P(z, z, u) : - x  /  f (a), z  /  f (a), u  /  f (a).&

! Substitution σ1 is a more general unifier than a substitution σ2 if for some substitution 𝛕, 

σ2 =  σ1𝛕 (i.e. σ1 followed by 𝛕) 

! Theorem. If two atomic formulae are unifiable, they have a most general unifier (mgu).



Examples

■ {P(x,  a),  P(b,  c)} is not unifiable (where a, b, c are constants) 

■ {P( f (x),  y),   P(a,  w)} is not unifiable 

■ {P(x,  c),  P(b,  c)} is unifiable by {x /b}  

■ {P( f (x),  y),  P( f (a),  w)} is unifiable by 
σ  =  {x/a ,   y/w}, τ =  {x/a ,   y/a,  w/a}, υ =  {x/a ,   y/b,  w /b} 
Note that σ  is an mgu  and τ  = σθ  where θ  = . .  .? 

■ {P(x),  P( f (x))} is not unifiable (circular reference requires occurs check)



Unification Algorithm 

Unify(Ψ1, Ψ2): // returns substitution or Failure
if Ψ1 or Ψ2 is a variable or constant, then:

if Ψ1 or Ψ2 are identical, then return NIL // unification succeeds but no substitution needed
else if Ψ1is a variable

then if Ψ1 occurs in Ψ2, then return Failure
else return {Ψ1 / Ψ2}

else if Ψ2 is a variable
if Ψ2 occurs in Ψ1 then return Failure
else return {Ψ2 / Ψ1}

else return Failure
if the predicate symbols of Ψ1 and Ψ2 are not same then return Failure
if Ψ1 and Ψ2 have a different number of arguments then return Failure
Set Substitution, SUBST to NIL
for i=1 to the number of elements in Ψ1:

S = Unify(Ψ1[i], Ψ2 [i])
if S = Failure then return Failure
if S ≠ NIL then

Apply S to the remainder of both Ψ1 and Ψ2

SUBST= APPEND(S, SUBST). 
return SUBST



Unification Algorithm (alternative) 

! The disagreement set of S: Find the leftmost position at which not all 
members E of S have the same symbol. 
! The set of subexpressions of  each E in S that begin at this position is the 

disagreement set of S. 

! Algorithm 
1. S0 =  S, σ0 =  - . ,  i =  0 
2. If Si is not a singleton find its disagreement set Di, otherwise  terminate 

with σi as the most general unifier 
3. If Di contains a variable vi and term ti such that vi does not occur  in ti then 

 σi+1 =  σ i-vi/t i., Si+1 =  Si-vi/t i.&

&&&otherwise terminate as S is not unifiable 

4. i =  i +  1; resume from step 2



Examples

! S =  - &f (x, g(x)), f (h(y), g(h(z))).&

D0 =  -x, h(y).&so σ1 =  -x /h(y).&

S1 =  - &f (h(y), g(h(y))), f (h(y), g(h(z))).&

D1 =  -y, z.&so σ2 =  -x/h(z), y /z. &

S2 =  - &f (h(z), g(h(z))), f (h(z), g(h(z))).&

i.e. σ2 is an mgu 

! S =  - &f (h(x), g(x)), f (g(x), h(x)). (does an mgu exist for these?)



First-Order Resolution

A1 #/ / / &# &Am #&B $B 0&#C1 #/ / / &#Cn

(A1 #/ / / &# &Am #C1 #/ / / &#Cn)θ 

where B, B0&are positive literals, Ai, Cj are literals, θ is an mgu of B and B0&

! B and $B 0&are complementary literals 

! (A1 #/ / / &# &Am #C1 #/ / / &#Cn)θ is the resolvent of the two clauses 

! Special case: If no Ai and Cj , resolvent is empty clause, denoted , or □ ⊥



Applying Resolution Refutation 

! Negate query to be proven (resolution is a refutation system) 

! Convert knowledge base and negated query into CNF 

! Repeatedly apply resolution to clauses or copies of clauses until either  the empty clause 
(contradiction) is derived or no more clauses can be  derived (a copy of a clause is the 
clause with all variables renamed) 

! If the empty clause is derived, answer ‘true’ (query follows from  knowledge base), 
otherwise answer ‘false’ (query does not follow from  knowledge base) . . . and if there are 
an infinite number of clauses that  can be derived, don’t answer at all



Resolution: Example 1 
⊢ ∃x (P(x) →  ∀x P(x)) 

CNF(¬∃x(P(x) →  ∀xP(x))) 
∀x ¬(¬P(x) ∨∀x P(x)) [eliminate implication, move negation] 
∀x (¬¬P(x) ∧¬∀x P(x)) [move negation] 
∀x (P(x) ∧∃x ¬P(x))  [move negation, eliminate double negation] 
∀x (P(x) ∧∃y ¬P(y))  [rename variables] 
∀x ∃y (P(x) ∧¬P(y))  [move quantifiers left] 
∀x (P(x) ∧¬P( f (x)))  [Skolimse] 
 P(x), ¬P(f (x))  [Distribution] 
1. P(x) [¬ Query] 
2. ¬P( f (y)) [Copy of ¬ Query, renaming variables] 
3. ☐ [1, 2 Resolution { x /  f (y)}]



Resolution: Example 2 

1&)x (y (z ((P(y) #&Q(z)) % &(P(x) #&Q(x))) 

CNF  

1. P( f (x)) #&Q(g(x)) [$&Query] 

2. $P(x)  [$&Query] 

3. $Q(x)  [$&Query] 

4. $P(y) [Copy of 2] 

5. Q(g(x)) [1, 4 Resolution -y /  f (x).] 
6. $Q(z) [Copy of 3] 

7. ☐& [5, 6 Resolution -z/g(x).]

≡ {P( f(x)) ∨ Q(g(x)), ¬P(x), ¬Q(x)}



Soundness and Completeness 

For First-Order Logic 
! Resolution refutation is sound, i.e. it preserves truth (if a set of  premises 

are all true, any conclusion drawn from those premises must  also be true) 

! Resolution refutation is complete, i.e. it is capable of proving all  
consequences of any knowledge base (not shown here!) 

! Resolution refutation is not decidable, i.e. there is no algorithm  
implementing resolution which when asked whether S 1&P, can  always 
answer ‘true’ or ‘false’ (correctly)



Undecidability of First-Order Logic 

! KB =  -P( f (x)) % &P(x).&

! Q =  P(a)? 

! Obviously  

! However, now try to show this using resolution

KB ⊧ Q ~P(a)

x/a

~P(f(a))

x/f(a)

~P(f(f(a))

x/f(f(a))

~P(f(f(f(a)))
...

~P(f(x)) v P(x)



Undecidability of First-Order Logic 

! Can we determine in general when this problem will arise? No! 

! There is no general procedure 
if (KB unsatisfiable) 

return true 
else return false 

! Resolution refutation is complete so if KB is unsatisfiable, the 
search  tree will contain the empty clause somewhere 

! . . . but if the search tree does not contain the empty clause the 
search  may go on forever 

! Even in the propositional case (which is decidable), complexity of  
resolution is O(2n) for problems of size n



Horn Clauses 

Use less expressive language 

! Review 
' literal – atomic formula or negation of atomic formula 
' clause – disjunction of literals 

! Definite Clause – exactly one positive literal 

' e.g. B #$A1  # . . .  #$An,  i.e. B 2 &A1 " . . .  "&An 

! Negative Clause – no positive literals 

' e.g. $Q1 #$Q2  (negation of a query) 

! Horn Clause – clause with at most one positive literal



SLD Resolution — 1SLD 

! Selected literals Linear form Definite clauses resolution 

! SLD refutation of a clause C from a set of clauses KB is a sequence 
1. First clause of sequence is C 
2. Each intermediate clause Ci is derived by resolving the previous  

clause Ci31 and a clause from KB 

3. The last clause in the sequence is 4&

! Theorem. For a definite KB and negative clause query Q: KB 5&Q 1&4&
if and only if KB 5&Q 1SLD 4

KB

C1

C2

☐

C



Prolog 

! Horn clauses in First-Order Logic 

! SLD resolution 

! Depth-first search strategy with backtracking 

! User control 
' Ordering of clauses in Prolog database (facts and rules) 
' Ordering of subgoals in body of a rule 

! Prolog is a programming language based on resolution refutation 
relying on the programmer to exploit search control rules



Prolog Example

p(X) :- q(X), r(X, Z), s(f(Z)).
q(X) :- r(X, Y), u(X).
s(f(X)) :- v(X).

r(a, b).
u(a).
v(b).

?- p(X)
X = a



Prolog Example

p(X1) :- q(X1), r(X1, Z), s(f(Z)).
q(X2) :- r(X2, Y), u(X2).
s(f(X3)) :- v(X3).

r(a, b).
u(a).
v(b).

?- p(X0)
X0 = a

Goal stack:

1. [p(X0)]

2. [q(X0), r(X0, Z), s(f(Z))] {X0/X1}

3. [r(a, b), u(a), r(a, b), s(f(b))] {X0/X1, X1/X2, X2/a, Y/b}

4. [u(a), r(a, b), s(f(b))] {X0/X1, X1/X2, X2/a, Y/b}

5. [r(a, b), s(f(b))]. {X0/X1, X1/X2, X2/a, Y/b}

6. [s(f(b))] {X0/X1, X1/X2, X2/a, Y/b, Z/X3, X3/b}

7. [v(b)] {X0/X1, X1/X2, X2/a, Y/b, Z/X3, X3/b}

8. []

X0/a

Z/b



Prolog Interpreter 

Input: A query Q and a logic program KB 
Output: ‘true’ if Q follows from KB, ‘false’ otherwise 
Initialise current goal set to -Q . &

while the current goal set is not empty do 
Choose G from the current goal set (first in goal set) 
Choose a copy G0&:- B1,..., Bn of a rule from KB for which most general unifier of 

G, G0&is θ (try all in KB) 
(if no such rule, undo unifications and try alternative rules)  Apply θ to the current 
goal set 
Replace Gθ by B1θ,..., Bnθ in current goal set 

if current goal set is empty  
output true 

else output false 

! Depth-first, left-right with backtracking

Inefficient	and	not	how	a	
real	Prolog	interpreter	works



Negation as Failure

! Prolog does not implement classical negation 

! Prolog \+ is known as negation as failure 

! KB 1&\+ G — KB cannot prove G 

! KB 1&$G — can prove $G 

! Negation as failure is finite failure



Soundness and Completeness Again

! Prolog including negation as failure is not sound, i.e. it does not preserve truth 

! Pure Prolog (without negation as failure) is not complete, i.e. it is  incapable of 
proving all consequences of any knowledge base (this is  because of the search order) 

! Even pure Prolog is not decidable, i.e. the Prolog implementation of resolution when 
asked whether KB 1&Q, can not always answer ‘true’  or ‘false’ (correctly)



Conclusion 

! First-order logic can express objects, properties of objects and  relationships 
between objects, and allows quantification over  variables 

! First-order logic is highly expressive 

! Resolution refutation is sound and complete, but not decidable 

! Prolog is more programming language than theorem prover 

! Gödel’s incompleteness theorem 
' Any first-order logic system with Peano’s axioms for arithmetic cannot be 

both consistent and prove all true statements (where statements are encoded 
using numbers)


