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Propositional Logic


! Propositions built from ", #, $, % 


! Sound, complete and decidable proof systems (inference procedures)

' Resolution refutation

' Prolog for special case of definite clauses


! Limited expressive power

' Cannot express relations and ontologies

! First-Order Logic can express knowledge about objects, properties  

and relationships between objects



Applications of Logic and Theorem Proving


! Knowledge Representation of AI Systems

' Declarative and Working Memory for an intelligent agent

' Answering questions about state of the world


! Semantic Web

' Extension to World Wide Web

' Makes information on the web machine interpretable


! Formal Verification

' Used by chip designers to verify VLSI designs

' Proof assistants used in software verification



This Lecture


! First-Order Logic

' Syntax

' Semantics


! Automated Reasoning

' Conjunctive Normal Form

' First-order resolution and unification

' Soundness, completeness, decidability



Syntax of First-Order Logic

! Constant symbols: a, b, . . . , Mary (objects)


! Variables: x, y, . . .


! Function symbols: f , mother_of , sine, . . .


! Predicate symbols: Mother, likes, . . .


! Quantifiers: (&(universal); )&(existential)



Language of First-Order Logic


! Terms: constants, variables, functions applied to terms (refer to  objects)


' e.g. a, f (a), mother_of (Mary), . . .


! Atomic formulae: predicates applied to tuples of terms

' e.g. likes(Mary, mother_of (Mary)), likes(x, a)


! Quantified formulae:


' e.g. (x likes(x, a), )x likes(x, mother_of (y))

' Second occurrences of x are bound by quantifier ((&in  first case, )&in second) 

and y in the second formula is free



Converting English into First-Order Logic

! Everyone likes lying on the beach — (x likes_lying_on_ beach(x)


! Someone likes Fido — )x likes(x, Fido)


! No one likes Fido — $*)x likes(x, Fido)) (or (x $likes(x, Fido))


! Fido doesn’t like everyone — $(x likes(Fido, x)


! All cats are mammals — (x (cat(x) % &mammal(x))


! Some mammals are carnivorous — )x (mammal(x) "&carnivorous(x))


! Note: (x A(x) +&$)x$A(x), )x A(x) +&$(x$A(x)



Universal Quantifiers


All men are mortal: (x (man(x) % &mortal(x))


! (x P is (almost) equivalent to the conjunction of instantiations of P


! (x (man(x) % &mortal(x)) +


(man(Alan) % &mortal(Alan))


"	 (man(Bill) % &mortal(Bill))


"	 (man(Colin) % &mortal(Colin))


"	 . . .


. . . only if every object (not only man) in the domain has a name



Existential Quantifiers


Some cats are immortal: )x (cat(x) "$mortal(x))


! )x P is (almost) equivalent to the disjunction of instantiations of P


! )x (cat(x) "$mortal(x)) +


(cat(Alan) "$mortal(Alan))


#	 (cat(Bill) "$mortal(Bill))


#	 (cat(Colin) "$mortal(Colin))


#	 . . .


. . . only if every object (not only cat) in the domain has a name



Nested Quantifiers


The order of quantification is very important


! Everything likes everything — (x (y likes(x, y) (or (y (x likes(x, y))


! Something likes something — )x )y likes(x, y) (or )y )x likes(x, y))


! Everything likes something — (x )y likes(x, y)


! There is something liked by everything — )y (x likes(x, y)



Defining Semantic Properties


Brothers are siblings


(x (y (brother(x, y) % &sibling(x, y))


“Sibling” is symmetric


(x (y (sibling(x, y) , &sibling(y, x))


One’s mother is one’s female parent


(x (y (mother(x, y) , &(female(x) "&parent(x, y))


A first cousin is a child of a parent’s sibling


(x (y (FirstCousin(x, y) , )p )s parent(p, x) "&sibling(p, s) "&parent(s, y)



Scope Ambiguity


! Typical pattern for (&and )

' (x (type_of (x) % &predicate(x))


' )x (type_of (x) "&predicate(x))


! Every student took an exam


' (x (student(x) % &)y (exam(y) "&took(x, y)))


' )y (exam(y) "(x (student(x) % &took(x, y)))



Scope of Quantifiers

! The scope of a quantifier in a formula A is that subformula B of A of  
which that quantifier is the main logical operator


! Variables belong to the innermost quantifier that mentions them


! Examples


' Q(x) % &(y P(x, y) — scope of (y is (y P(x, y)


' (z P(z) % &$Q(z) — scope of (z is (z P(z) but not Q(z)


' )x (P(x) % &(x P(x))


' (x (P(x) % &Q(x)) % &((x P(x) % &(x Q(x))



Semantics of First-Order Logic


! An interpretation is required to give semantics to first-order logic.


! An interpretation is a non-empty “domain of discourse” (set of objects).  
The truth of any formula depends on the interpretation.


! The interpretation defines, for each

	 constant symbol	 an object in the domain

	 function symbol	 a function from domain tuples to the domain

	 predicate symbol	 a relation over the domain (a set of tuples)


! Then by definition

	 universal quantifier (x P(x) is True iff P(a) is True for all  assignments 

of domain elements a to x

	 existential quantifier ∃x P(x) is True iff P(a) is True for at least one  

assignment of domain element a to x



Resolution for First-Order Logic 
(Alan Robinson, 1965)

! Based on resolution for Propositional Logic


! Extended syntax: allow variables and quantifiers


! Define “clausal form” for first-order logic formulae


! Eliminate quantifiers from clausal forms


! Adapt resolution procedure to cope with variables (unification)



Conversion to Conjunctive Normal Form


1. Eliminate implications and bi-implications as in propositional case


2. Move negations inward using De Morgan’s laws


' plus rewriting $(x P as )x $P and $)x P as (x $P


3. Eliminate double negations


4. Rename bound variables if necessary so each only occurs once


' e.g. (x P(x) #)x Q(x) becomes (x P(x) #)y Q(y)


5. Use equivalences to move quantifiers to the left


' e.g. (x P(x) "&Q becomes (x (P(x) "&Q) where x is not in Q


' e.g. (x P(x) ")y Q(y) becomes (x )y (P(x) "&Q(y))



Conversion to CNF – Continued


6. Skolemise (replace each existentially quantified variable by a new term)


' )x P(x) becomes P(a0) using a Skolem constant a0 since )x occurs at the outermost level


' Any constant can represent the x, since it must be unique


' (x )y P(x, y) becomes P(x, f0(x)) using a Skolem function f0 since ∃y occurs within ∀x


' Y may depend on the choice of x, so y is a function of x


7. The formula now has only universal quantifiers and all are at the left of the formula: drop them


8. Use distribution laws to get CNF and then clausal form



∀x [∀y P(x, y) →  ¬∀y (Q(x, y) →  R(x, y))]


1. ∀x [¬∀y P(x, y) ∨¬∀y (¬Q(x, y) ∨  R(x, y))]	 Eliminate Implication


2, 3. ∀x [∃y ¬P(x, y) ∨∃y (Q(x, y) ∧¬R(x, y))]	 Move negation inward


4. ∀x [∃y ¬P(x, y) ∨∃z (Q(x, z) ∧¬R(x, z))]	 Rename variables


5. ∀x ∃y ∃z [¬P(x, y) ∨(Q(x, z) ∧¬R(x, z))]	 Move quantifiers left


6. ∀x [¬P(x, f (x)) ∨(Q(x, g(x)) ∧¬R(x, g(x)))]	 Replace ∃ vars by Skolem fns


7. ¬P(x, f (x)) ∨(Q(x, g(x)) ∧¬R(x, g(x)))	 Drop ∀ 


8. (¬P(x, f (x)) ∨  Q(x, g(x))) ∧(¬P(x, f (x)) ∨¬R(x, g(x)))	 Distribution laws to get CNF


8. {¬P(x, f (x)) ∨  Q(x, g(x)), ¬P(x, f (x)) ∨¬R(x, g(x))}	 Clausal form

Remember: (x P(x) +&$)x$P(x), )x P(x) +&$(x$P(x)PCNF: Example 1



CNF: Example 2


¬∃x ∀y ∀z ((P(y) ∨ Q(z)) → (P(x) ∨ Q(x)))


1. ¬∃x ∀y ∀z (¬(P(y) ∨ Q(z)) ∨ P(x) ∨ Q(x))	 Eliminate Implication


2. ∀x ¬∀y ∀z (¬(P(y) ∨ Q(z)) ∨ P(x) ∨ Q(x)) 	 Move negation inward


2. ∀x ∃y ¬∀z (¬(P(y) ∨ Q(z)) ∨ P(x) ∨ Q(x)) 	 Move negation inward


2. ∀x ∃y ∃z ¬(¬(P(y) ∨ Q(z)) ∨ P(x) ∨ Q(x)) 	 Move negation inward


2. ∀x ∃y ∃z ((P(y) ∨ Q(z)) ∧¬(P(x) ∨ Q(x))) 	 Move negation inward


6. ∀x ((P(f (x)) ∨ Q(g(x))) ∧¬P(x) ∧¬Q(x)) 	 Replace ∃ vars by Skolem fns


7. (P(f (x)) ∨ Q(g(x)) ∧¬P(x) ∧¬Q(x) 	 Drop ∀


8. {P(f (x)) ∨ Q(g(x)), ¬P(x), ¬Q(x)} 	 Clausal form



Unification


! A unifier of two atomic formulae is a substitution of terms for variables that makes 
them identical


' Each variable has at most one associated term

' Substitutions are applied simultaneously


! Unifier of P(x, f (a), z) and P(z, z, u) : - x  /  f (a), z  /  f (a), u  /  f (a).


! Substitution σ1 is a more general unifier than a substitution σ2 if for some substitution 𝛕,


σ2 =  σ1𝛕 (i.e. σ1 followed by 𝛕)


! Theorem. If two atomic formulae are unifiable, they have a most general unifier (mgu).



Examples

■ {P(x,  a),  P(b,  c)} is not unifiable (where a, b, c are constants)


■ {P( f (x),  y),   P(a,  w)} is not unifiable


■ {P(x,  c),  P(b,  c)} is unifiable by {x /b} 


■ {P( f (x),  y),  P( f (a),  w)} is unifiable by 
σ  =  {x/a ,   y/w}, τ =  {x/a ,   y/a,  w/a}, υ =  {x/a ,   y/b,  w /b} 
Note that σ  is an mgu  and τ  = σθ  where θ  = . .  .?


■ {P(x),  P( f (x))} is not unifiable (circular reference requires occurs check)



Unification Algorithm


Unify(Ψ1, Ψ2):	 // returns substitution or Failure
if Ψ1 or Ψ2 is a variable or constant, then:


if Ψ1 or Ψ2 are identical, then return NIL		 // unification succeeds but no substitution needed
else if Ψ1is a variable


then if Ψ1 occurs in Ψ2, then return Failure
else return {Ψ1 / Ψ2}


else if Ψ2 is a variable

if Ψ2 occurs in Ψ1 then return Failure
else return {Ψ2 / Ψ1}


else return Failure
if the predicate symbols of Ψ1 and Ψ2 are not same then return Failure
if Ψ1 and Ψ2 have a different number of arguments then return Failure
Set Substitution, SUBST to NIL
for i=1 to the number of elements in Ψ1:

S = Unify(Ψ1[i], Ψ2 [i])

if S = Failure then return Failure
if S ≠ NIL then

Apply S to the remainder of both Ψ1 and Ψ2

SUBST= APPEND(S, SUBST). 

return SUBST



Unification Algorithm (alternative)


! The disagreement set of S: Find the leftmost position at which not all 
members E of S have the same symbol.

! The set of subexpressions of  each E in S that begin at this position is the 

disagreement set of S.


! Algorithm

1. S0 =  S, σ0 =  - . ,  i =  0

2. If Si is not a singleton find its disagreement set Di, otherwise  terminate 

with σi as the most general unifier

3. If Di contains a variable vi and term ti such that vi does not occur  in ti then


	 σi+1 =  σ i-vi/t i.,	 Si+1 =  Si-vi/t i.


&&&otherwise terminate as S is not unifiable


4. i =  i +  1; resume from step 2



Examples

! S =  - &f (x, g(x)), f (h(y), g(h(z))).


D0 =  -x, h(y).&so σ1 =  -x /h(y).


S1 =  - &f (h(y), g(h(y))), f (h(y), g(h(z))).


D1 =  -y, z.&so σ2 =  -x/h(z), y /z. 


S2 =  - &f (h(z), g(h(z))), f (h(z), g(h(z))).


i.e. σ2 is an mgu


! S =  - &f (h(x), g(x)), f (g(x), h(x)). (does an mgu exist for these?)



First-Order Resolution

A1 #/ / / &# &Am #&B $B 0&#C1 #/ / / &#Cn

(A1 #/ / / &# &Am #C1 #/ / / &#Cn)θ


where B, B0&are positive literals, Ai, Cj are literals, θ is an mgu of B and B0


! B and $B 0&are complementary literals


! (A1 #/ / / &# &Am #C1 #/ / / &#Cn)θ is the resolvent of the two clauses


! Special case: If no Ai and Cj , resolvent is empty clause, denoted , or □ ⊥



Applying Resolution Refutation


! Negate query to be proven (resolution is a refutation system)


! Convert knowledge base and negated query into CNF


! Repeatedly apply resolution to clauses or copies of clauses until either  the empty clause 
(contradiction) is derived or no more clauses can be  derived (a copy of a clause is the 
clause with all variables renamed)


! If the empty clause is derived, answer ‘true’ (query follows from  knowledge base), 
otherwise answer ‘false’ (query does not follow from  knowledge base) . . . and if there are 
an infinite number of clauses that  can be derived, don’t answer at all



Resolution: Example 1

⊢ ∃x (P(x) →  ∀x P(x))


CNF(¬∃x(P(x) →  ∀xP(x)))

∀x ¬(¬P(x) ∨∀x P(x))	 [eliminate implication, move negation]

∀x (¬¬P(x) ∧¬∀x P(x))	 [move negation]

∀x (P(x) ∧∃x ¬P(x))	 	 [move negation, eliminate double negation]

∀x (P(x) ∧∃y ¬P(y))	 	 [rename variables]

∀x ∃y (P(x) ∧¬P(y))	 	 [move quantifiers left]

∀x (P(x) ∧¬P( f (x)))	 	 [Skolimse]

 P(x), ¬P(f (x))	 	 [Distribution]

1. P(x)	 [¬ Query]

2. ¬P( f (y))	 [Copy of ¬ Query, renaming variables]

3. ☐	 [1, 2 Resolution { x /  f (y)}]



Resolution: Example 2


1&)x (y (z ((P(y) #&Q(z)) % &(P(x) #&Q(x)))


CNF 


1. P( f (x)) #&Q(g(x))	 [$&Query]


2. $P(x) 	 [$&Query]


3. $Q(x) 	 [$&Query]


4. $P(y)	 [Copy of 2]


5. Q(g(x))	 [1, 4 Resolution -y /  f (x).]

6. $Q(z)	 [Copy of 3]


7. ☐	 [5, 6 Resolution -z/g(x).]

≡ {P( f(x)) ∨ Q(g(x)), ¬P(x), ¬Q(x)}



Soundness and Completeness


For First-Order Logic

! Resolution refutation is sound, i.e. it preserves truth (if a set of  premises 

are all true, any conclusion drawn from those premises must  also be true)


! Resolution refutation is complete, i.e. it is capable of proving all  
consequences of any knowledge base (not shown here!)


! Resolution refutation is not decidable, i.e. there is no algorithm  
implementing resolution which when asked whether S 1&P, can  always 
answer ‘true’ or ‘false’ (correctly)



Undecidability of First-Order Logic


! KB =  -P( f (x)) % &P(x).


! Q =  P(a)?


! Obviously 


! However, now try to show this using resolution

KB ⊧ Q ~P(a)


x/a


~P(f(a))


x/f(a)


~P(f(f(a))


x/f(f(a))


~P(f(f(f(a)))

...

~P(f(x)) v P(x)	



Undecidability of First-Order Logic


! Can we determine in general when this problem will arise? No!


! There is no general procedure

if (KB unsatisfiable)


return true

else return false


! Resolution refutation is complete so if KB is unsatisfiable, the 
search  tree will contain the empty clause somewhere


! . . . but if the search tree does not contain the empty clause the 
search  may go on forever


! Even in the propositional case (which is decidable), complexity of  
resolution is O(2n) for problems of size n



Horn Clauses


Use less expressive language


! Review

' literal – atomic formula or negation of atomic formula

' clause – disjunction of literals


! Definite Clause – exactly one positive literal


' e.g. B #$A1  # . . .  #$An,  i.e. B 2 &A1 " . . .  "&An


! Negative Clause – no positive literals


' e.g. $Q1 #$Q2  (negation of a query)


! Horn Clause – clause with at most one positive literal



SLD Resolution — 1SLD


! Selected literals Linear form Definite clauses resolution


! SLD refutation of a clause C from a set of clauses KB is a sequence

1. First clause of sequence is C

2. Each intermediate clause Ci is derived by resolving the previous  

clause Ci31 and a clause from KB


3. The last clause in the sequence is 4


! Theorem. For a definite KB and negative clause query Q: KB 5&Q 1&4&
if and only if KB 5&Q 1SLD 4

KB

C1

C2

☐

C



Prolog


! Horn clauses in First-Order Logic


! SLD resolution


! Depth-first search strategy with backtracking


! User control

' Ordering of clauses in Prolog database (facts and rules)

' Ordering of subgoals in body of a rule


! Prolog is a programming language based on resolution refutation 
relying on the programmer to exploit search control rules



Prolog Example

p(X) :- q(X), r(X, Z), s(f(Z)).

q(X) :- r(X, Y), u(X).

s(f(X)) :- v(X).


r(a, b).

u(a).

v(b).


?- p(X)

X = a



Prolog Example

p(X1) :- q(X1), r(X1, Z), s(f(Z)).

q(X2) :- r(X2, Y), u(X2).

s(f(X3)) :- v(X3).


r(a, b).

u(a).

v(b).


?- p(X0)

X0 = a

Goal stack:


1. [p(X0)]


2. [q(X0), r(X0, Z), s(f(Z))]	 {X0/X1}


3. [r(a, b), u(a), r(a, b), s(f(b))]	 {X0/X1, X1/X2, X2/a, Y/b}


4. [u(a), r(a, b), s(f(b))] 		 {X0/X1, X1/X2, X2/a, Y/b}


5. [r(a, b), s(f(b))]. 		 {X0/X1, X1/X2, X2/a, Y/b}


6. [s(f(b))] 		 {X0/X1, X1/X2, X2/a, Y/b, Z/X3, X3/b}


7. [v(b)] 		 {X0/X1, X1/X2, X2/a, Y/b, Z/X3, X3/b}


8. []

X0/a

Z/b



Prolog Interpreter


Input: A query Q and a logic program KB

Output: ‘true’ if Q follows from KB, ‘false’ otherwise

Initialise current goal set to -Q . 


while the current goal set is not empty do

Choose G from the current goal set (first in goal set)

Choose a copy G0&:- B1,..., Bn of a rule from KB for which most general unifier of 

G, G0&is θ (try all in KB)

(if no such rule, undo unifications and try alternative rules)  Apply θ to the current 
goal set

Replace Gθ by B1θ,..., Bnθ in current goal set


if current goal set is empty 

output true


else output false


! Depth-first, left-right with backtracking

Inefficient	and	not	how	a	
real	Prolog	interpreter	works



Negation as Failure

! Prolog does not implement classical negation


! Prolog \+ is known as negation as failure


! KB 1&\+ G	 — KB cannot prove G


! KB 1&$G	 — can prove $G


! Negation as failure is finite failure



Soundness and Completeness Again

! Prolog including negation as failure is not sound, i.e. it does not preserve truth


! Pure Prolog (without negation as failure) is not complete, i.e. it is  incapable of 
proving all consequences of any knowledge base (this is  because of the search order)


! Even pure Prolog is not decidable, i.e. the Prolog implementation of resolution when 
asked whether KB 1&Q, can not always answer ‘true’  or ‘false’ (correctly)



Conclusion


! First-order logic can express objects, properties of objects and  relationships 
between objects, and allows quantification over  variables


! First-order logic is highly expressive


! Resolution refutation is sound and complete, but not decidable


! Prolog is more programming language than theorem prover


! Gödel’s incompleteness theorem

' Any first-order logic system with Peano’s axioms for arithmetic cannot be 

both consistent and prove all true statements (where statements are encoded 
using numbers)


