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Constraint Satisfaction Problems
• Assignment problems (e.g. who teaches what class) 


• Timetabling problems (e.g. which class is offered when and where?) 


• Hardware configuration (e.g. minimise space for circuit layout)


• Transport scheduling (e.g. courier delivery, vehicle routing)


• Factory scheduling (optimise assignment of jobs to machines)


• Gate assignment (assign gates to aircraft to minimise transit) 


Closely related to optimisation problems 



Lecture Overview 

• Constraint Satisfaction Problems (CSPs)


• CSP examples 


• Backtracking search and heuristics 


• Forward checking and arc consistency 


• Variable elimination


• Local search


• Hill climbing


• Simulated annealing 



Constraint Satisfaction Problems 
(CSPs) 

• Constraint Satisfaction Problems are defined by a set of variables , 
each with a domain  of possible values, and a set of constraints  
that specify allowable combinations of values. 


• The aim is to find an assignment of the variables  from the domains 
 in such a way that none of the constraints  are violated.
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Variables: WA, NT, Q, NSW, V, SA, T

Domains: Di = {red, green, blue}

Constraints: adjacent regions must have different colours 

	 e.g. WA≠ NT, etc. 

Example: Map-Colouring 
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Example: Map-Coloring
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Constraints: adjacent regions must have different colors
e.g. WA!= NT, etc.
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Constraint graph
Constraint graph: nodes are variables, arcs are constraints


Binary CSP: each constraint relates two variables
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Variables: WA, NT, Q, NSW, V, SA, T

Domains: Di = {red, green, blue}

Constraints: adjacent regions must have different colours 

e.g. WA≠ NT, etc.  

or (WA,NT) in {(red,green),(red,blue),(green,red), (green,blue),(blue,red),(blue,green)} 

Example: Map-Colouring 
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Example: Map-Colouring 

{WA=red, NT=green, Q=red, NSW=green, V=red, SA=blue, T=green} 
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Example: Map-Coloring

Solution is an assignment that satisfies all the constraints, e.g.

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

{WA=red, NT=green, Q=red, NSW=green, V=red, SA=blue, T=green}
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n-Queens Puzzle as a CSP 
Assume one queen in each column. Domains are possible positions of 
queen in a column. Assignment is when each domain has one element.

Which row does each one go in? 


Variables: Q1, Q2, Q3, Q4 

Domains: Di = {1, 2, 3, 4} 

Constraints: 
        Qi  ≠  Qj   (cannot be in same row) 
        |Qi − Qj| ≠ |i− j|  (or same diagonal) 
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n-Queens Puzzle as a CSP

Assume one queen in each column. Which row does each one go in?

Variables: Q1, Q2, Q3, Q4
Domains: Di = {1,2,3,4}

Constraints:
Qi != Qj (cannot be in same row)
|Qi−Qj| != |i− j| (or same diagonal)
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{1, 2, 1, 3} 
Violates constraints because 

 and Q1 = Q3

|Q1 − Q2 | = | i − j | = |1 − 2 | = 1



Example: n-Queens Puzzle 

Put n queens on an n-by-n chess board so that no two queens are attacking each other. 
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Example: n-Queens Puzzle

Put n queens on an n-by-n chess board so that
no two queens are attacking each other.
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Example: Cryptarithmetic 

Variables: 
D E M N O R S Y 


Domains: 

{0,1,2,3,4,5,6,7,8,9} 

Constraints: 
M ≠ 0, S ≠ 0 (unary constraints) 

Y = D+E or Y = D+E −10, etc.  
D ≠ E,  D ≠ M,  D ≠ N, etc.  
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Example: Cryptarithmetic

S E N D
+ M O R E

M O N E Y

Variables:
D E M N O R S Y
Domains:
{0,1,2,3,4,5,6,7,8,9}

Constraints:
M != 0, S != 0 (unary constraints)
Y = D+E or Y = D+E−10, etc.
D != E, D !=M, D != N, etc.
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if there is a carry 
over, have to add 
to next column



Variables: F T U W R O C1 C2 C3


Domains: {0,1,2,3,4,5,6,7,8,9} 

Example: Cryptarithmetic

Constraints: AllDifferent(F, T , U , W , R , O) 

O + O = R + 10·C1 

C1 + W + W = U + 10·C2 

C2 + T + T = O + 10·C3 

C3 = F 
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Cryptarithmetic with Hidden Variables

We can add “hidden” variables to simplify the constraints.

OWTF U R
+

OWT
OWT

F O U R
X2 X1X3

Variables: F T U W R O X1X2X3
Domains: {0,1,2,3,4,5,6,7,8,9}

Constraints:
AllDifferent(F,T,U,W,R,O)
O + O = R + 10·X1, etc.
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Cryptarithmetic with Auxiliary Variables 

Variables: F T U W R O X1 X2 X3

Domains: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 
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Constraints: AllDifferent(F, T , U , W , R , O) 

O + O = R + 10·C1 

C1 + W + W = U + 10·C2 

C2 + T + T = O + 10·C3 

C3 = F 

F T U W R O

C3 C2 C1

All Different

Additions



Cryptarithmetic with Allen Newell 

Book: Intended Rational Behavior 
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Cryptarithmetic with Allen Newell
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CSP Application - Factory scheduling 

• An agent has to schedule a set of activities for a manufacturing process, 
involving casting, milling, drilling, and bolting. 


• Each activity has a set of possible times at which it may start. 


• The agent has to satisfy various constraints arising from prerequisite 
requirements and resource use limitations. 


• For each activity there is a variable that represents the time that it starts:

• B – start of bolding    

• D – start of drilling 

• C – start of casting 



CSP Application - Factory scheduling 

Constraints on the possible dates for three activities:


Variables: A,  B, C  - variables that represent the date of each activity

Domain of each variable is: {1, 2, 3, 4 } 


Constraint: 


A starts on or before the same date as B and it cannot be that A and B start on 
the same date and C starts on or before day 3.

(A ≤ B) ∧ (B < 3) ∧ (B < C) ∧ ¬(A = B ∧ C ≤ 3)



CSP Application - Factory scheduling 
Constraint on the possible dates for three activities.

Variables: A,  B, C  - variables that represent the date of each activity
Domain of each variable is: {1, 2, 3, 4 } 

Constraint: 


	 


A starts on or before the same date as B and it cannot be that A and B 
start on the same date and C starts on or before day 3.


Constraint defines its extension, e.g. table specifying the legal 
assignments:

(A ≤ B) ∧ (B < 3) ∧ (B < C) ∧ ¬(A = B ∧ C ≤ 3)

A B C

2 2 4

1 1 4

1 2 3

1 2 4



Varieties of CSPs
• Discrete variables


• Finite domains; size  complete assignments 


• e.g. Boolean CSPs, incl. Boolean satisfiability (NP-complete) 


• Infinite domains (integers, strings, etc.)


• Job shop scheduling, variables are start/end days for each job


• Need a constraint language, e.g. StartJob1 + 5 ≤ StartJob3


• Linear constraints solvable, nonlinear undecidable 


• Continuous variables


• e.g. start/end times for Hubble Telescope observations 


• Linear constraints solvable in polynomial time by linear programming methods

d ⇒ O(dn)



Types of constraints 
• Unary constraints involve a single variable 


M ≠ 0


• Binary constraints involve pairs of variables 

SA ≠ WA 


• Higher-order constraints involve 3 or more variables 

 Y = D + E   or   Y = D + E − 10 


• Inequality constraints on continuous variables 

EndJob1 + 5 ≤ StartJob3 


• Soft constraints (preferences)

11am lecture is better than 8am lecture! 



Path Search vs Constraint Satisfaction 

Difference between path search problems and CSPs 


• Path Search Problems (e.g. Delivery Robot)

• Knowing the final state is easy


• Difficult part is how to get there 


• Constraint Satisfaction Problems (e.g. n-Queens) 

• Difficult part is knowing the final state


• How to get there is easy 



Backtracking Search 
• CSPs can be solved by assigning values to variables one by one, in different combinations.


• Whenever a constraint is violated, go back to most recently assigned variable and assign it 
a new value. 


• Can use Depth First Search, where states are defined by the values assigned so far: 


• Initial state: empty assignment. 


• Successor function:


• assign a value to an unassigned variable that does not conflict with previously assigned values 
of other variables.


• If no legal values remain, the successor function fails


• Goal test: all variables have been assigned a value, and no constraints have been violated. 



Backtracking example 
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Backtracking example
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Backtracking example 
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Backtracking example
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Backtracking example
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Backtracking example 



Backtracking Search Properties 

• If there are n variables, every solution will occur at exactly depth n. 


• Variable assignments are commutative 


     [WA = red then NT = green] same as [NT = green then WA = red] 


• Backtracking search can solve n-Queens for n ≈ 25 



Programming Constraints
variables([wa=_, nt=_, q=_, nsw=_, v=_, sa=_, t=_]).


domain(red).

domain(green).

domain(blue).


connected(wa, nt).

connected(wa, sa).

connected(nt, q).

connected(nt, sa).

connected(sa, q).

connected(sa, nsw).

connected(sa, v).

connected(q, nsw).

connected(v, nsw).


adjacent(A, B) :- connected(A, B).

adjacent(A, B) :- connected(B, A).

red
green

blue



Programming Constraints
solve(V) :-

    variables(V),

    assign_all(V). 


assign_all([]).

assign_all([State|OtherStates]):-

    assign_all(OtherStates),

    assign_variable(State, OtherStates).


assign_variable(Var = Colour, OtherStates) :-

    domain(Colour),

    constraint(Var = Colour, OtherStates).


constraint(S1 = C, OtherStates) :-

    \+ (adjacent(S1, S2), member(S2 = C, OtherStates)).

Prolog’s not operator



All Solutions by Backtracking
WA NT Q NSW V SA T

green  blue  green  blue  green  red  red
blue  green  blue  green  blue  red  red
red  blue  red  blue  red  green  red
blue  red  blue  red  blue  green  red
red  green  red  green  red  blue  red

green  red  green  red  green  blue  red
green  blue  green  blue  green  red  green
blue  green  blue  green  blue  red  green
red  blue  red  blue  red  green  green
blue  red  blue  red  blue  green  green
red  green  red  green  red  blue  green

green  red  green  red  green  blue  green
green  blue  green  blue  green  red  blue
blue  green  blue  green  blue  red  blue
red  blue  red  blue  red  green  blue
blue  red  blue  red  blue  green  blue
red  green  red  green  red  blue  blue

green  red  green  red  green  blue  blue



Improvements to Backtracking Search 

• Which variable should be assigned next?


• In what order should its values be tried?


• Can we detect inevitable failure early? 



Minimum Remaining Values 
• Minimum Remaining Values (MRV)


• choose the variable with the fewest legal remaining values 


• Most constrained variable
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Minimum Remaining Values

Minimum Remaining Values (MRV):

Choose the variable with the fewest legal values.

UNSW c©Alan Blair, 2013-8



• Tie-breaker among MRV variables


• Degree heuristic:

• choose the variable with the most constraints on variables 

(i.e. most edges in graph)

• If same degree, choose any one

Degree Heuristic 
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Degree Heuristic

Tie-breaker among MRV variables

Degree heuristic:
Choose the variable with the most constraints on remaining variables.
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Least Constraining Value 
• Given a variable, choose the least constraining value: 

the one that rules out the fewest values in the remaining variables 


• More generally, 3 allowed values would be better than 2, etc. 
Combining these heuristics makes 1000 queens feasible. 



• Keep track of remaining legal values for unassigned variables


• Terminate search when any variable has no legal values 

• prune off that part of the search tree, and backtrack

Forward Checking 

Initially, all values are available.
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Forward checking

Idea: Keep track of remaining legal values for unassigned variables

WA NT Q NSW V SA T
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Forward Checking 
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Forward checking

Idea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

WA NT Q NSW V SA T
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• Keep track of remaining legal values for unassigned variables


• Terminate search when any variable has no legal values 

• prune off that part of the search tree, and backtrack



Forward Checking 
COMP3411/9414/9814 18s1 Constraint Satisfaction Problems 25

Forward checking

Idea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

WA NT Q NSW V SA T
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• Keep track of remaining legal values for unassigned variables


• Terminate search when any variable has no legal values 

• prune off that part of the search tree, and backtrack

Fail



Constraint Propagation 
Forward checking propagates information from assigned to 
unassigned variables, but doesn’t provide early detection for all 
failures: 


NT and SA cannot both be blue

Constraint propagation repeatedly enforces constraints locally 
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Constraint propagation

Forward checking propagates information from assigned to unassigned
variables, but doesn’t provide early detection for all failures:

WA NT Q NSW V SA T

NT and SA cannot both be blue!

Constraint propagation repeatedly enforces constraints locally.
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Arc Consistency 

 is consistent if

for every value x of X there is some allowed y 

X → Y
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Arc consistency

Simplest form of constraint propagation makes each arc consistent

X → Y is consistent if
for every value x of X there is some allowed y

WA NT Q NSW V SA T

UNSW c©Alan Blair, 2013-8

Propagate arc consistency on the graph

Only possible value fo SA is blue, so NSW can’t blue

X



Arc Consistency 
 is consistent if


for every value x of X there is some allowed y 


• If X loses a value, neighbours of X need to be rechecked.

• Since NSW can only be red now, V cannot be red

X → Y
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Arc consistency

X → Y is consistent if
for every value x of X there is some allowed y

WA NT Q NSW V SA T

If X loses a value, neighbors of X need to be rechecked.
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Arc Consistency 
 is consistent if


for every value x of X there is some allowed y 


• If X loses a value, neighbours of X need to be rechecked. 

• Arc consistency detects failure earlier than forward checking

• Can be run as a preprocessor after each assignment 

X → Y
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Arc consistency

X → Y is consistent if
for every value x of X there is some allowed y

WA NT Q NSW V SA T

If X loses a value, neighbors of X need to be rechecked.
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Arc Consistency 
 is consistent if


for every value x of X there is some allowed y  


• Arc consistency detects failure earlier than forward checking.

• For some problems, it can speed up search enormously.

• For others, it may slow the search due to computational overheads. 

X → Y
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Arc consistency

X → Y is consistent if
for every value x of X there is some allowed y

WA NT Q NSW V SA T

Arc consistency detects failure earlier than forward checking.
For some problems, it can speed up the search enormously.
For others, it may slow the search due to computational overheads.
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Variable Elimination 

Variables: A, B, C, D, E  

Domains:  A = {1, 2}, B = {1, 2, 3}, C = {3, 4}, D = {2, 3}, E = {2, 3, 4}   

Constraints:   A ≠ B,  E ≠ C, E ≠ D, A < D, B < E, D < C, E-A is odd



Variable Elimination 

• Eliminates variable, one by one


• Replace them with constraints on adjacent variables



Variable Elimination Example 
1. Select a variable X


2. Enumerate constraints



Variable Elimination Example 
1. Select a variable X


2. Enumerate constraints



Variable Elimination Example 
1. Select a variable X


2. Join the constraints in which 
X appears



Variable Elimination Example 
1. Select a variable X


2. Join the constraints in which 
X appears 


3. Project join onto its variables 
other than X (forming r4)

To generate one or all solutions, the algorithm remembers the joined 
relation C, D, E to construct a solution that involves C from a solution 
to the reduced network.



Variable Elimination
1. Select a variable X


2. Join the constraints in which X appears, 
forming constraint R1 


3. Project R1 onto its variables other than X, 
forming R2


4. Replace all of the constraints in which X 
appears by R2


5. Recursively solve the simplified problem, 
forming R3


6. Return R1 joined with R3

Boosting Search with Variable Elimination 9
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b) After eliminating X7

d) After branching in X3c) After eliminating X6

a) Initial constraint graph

Figure 3. A constraint graph and its evolution over a sequence of variable
eliminations and branchings.

We can still use BE as a pre-process and eliminate those variables whose
elimination is not too costly. This will transform the problem into an
equivalent one having a smaller set of variables X

0. Subsequently, we
can solve the reduced problem with plain BB. Once the search is over,
we have the best cost of the reduced problem (which is also the best cost
of the original problem) and the corresponding assignment to variables
in X

0 which can be extended to X in a backtrack-free manner. The
recursive application of this idea is the basis of BE-BB(k).

EXAMPLE 2. Consider a COP whose constraint graph is depicted in

Figure 3.a. Suppose that we want to eliminate a variable but we do

not want to compute and store constraints with arity higher than two.

Then we can only take into consideration variables connected to at most

two variables. In our example, variable x7 is the only one that can

be selected. Its elimination transforms the problem into another one

whose constraint graph is depicted in Figure 3.b. Now x6 has its degree

decreased to two, so it can also be eliminated. The new constraint graph

is depicted in Figure 3.c. At this point, every variable has degree greater

than two, so we switch to a search schema which selects a variable, say

x3, branches over its values and produces a set of d subproblems, one for

submitted.tex; 8/05/2002; 11:32; p.9



Variable Elimination 
1. If there is only one variable,


return the join of all the relations in the constraints 


2. Otherwise

2.1. Select a variable X


2.2. Join the constraints in which X appears, forming constraint R1 


2.3. Project R1 onto its variables other than X, forming R2


2.4. Replace all of the constraints in which X appears by R2


2.5. Recursively solve the simplified problem, forming R3


2.6. Return R1 joined with R3



Local Search 
There is another class of algorithms for solving CSP’s, called 
“Iterative Improvement” or “Local Search”. 
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Local Search

There is another class of algorithms for solving CSP’s, called “Iterative
Improvement” or “Local Search”.

These algorithms assign all variables randomly in the beginning (thus
violating several constraints), and then change one variable at a time,
trying to reduce the number of violations at each step.

h = 5 h = 2 h = 0
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Local Search 
There is another class of algorithms for solving CSP’s, called 
“Iterative Improvement” or “Local Search”. 


• Iterative Improvement 

• assign all variables randomly in the beginning (thus violating 

several constraints), 

• change one variable at a time, trying to reduce the number of 

violations at each step. 

• Greedy Search with h = number of constraints violated 
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Local Search

There is another class of algorithms for solving CSP’s, called “Iterative
Improvement” or “Local Search”.

These algorithms assign all variables randomly in the beginning (thus
violating several constraints), and then change one variable at a time,
trying to reduce the number of violations at each step.

h = 5 h = 2 h = 0
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Hill-climbing by min-conflicts 

• Variable selection: randomly select any conflicted variable 


• Value selection by min-conflicts heuristic


• choose value that violates the fewest constraints 

COMP3411/9414/9814 18s1 Constraint Satisfaction Problems 32

Hill-climbing by min-conflicts
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0

! Variable selection: randomly select any conflicted variable

! Value selection by min-conflicts heuristic
" choose value that violates the fewest constraints
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Flat regions and local optima 

• May have to go sideways or backwards to make progress towards the solution


• Exploration vs Exploitation
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Flat regions and local optima

Sometimes, have to go sideways or even backwards in order to make
progress towards the actual solution.
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Inverted View 

When we are minimising violated constraints, it makes sense to think of starting at 
the top of a ridge and climbing down into the valleys. 
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Inverted View

When we are minimizing violated constraints, it makes sense to think of
starting at the top of a ridge and climbing down into the valleys.
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Simulated Annealing 
• Stochastic hill climbing based on difference between evaluation of 

previous state (h0) and new state (h1). 


• If h1 < h0, definitely make the change (smaller is better) 


• Otherwise, make the change with probability 


 

     where T is a “temperature” parameter. 


• Reduces to ordinary hill climbing as T → 0 


• Becomes totally random search as T → ∞ 


• Sometimes, we gradually decrease the value of T during the search 

e−(h1−h0)/T

(h1 < h0)

(h0 < h1)



• Given random initial state, hill climbing by min-conflicts with random restarts can solve n-
queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000). 


• In general, randomly-generated CSP’s tend to be easy if there are very few or very many 
constraints. They become extra hard in a narrow range of the ratio 
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critical ratio



Summary
• CSPs are a special kind of search problem:

• states defined by values of a fixed set of variables

• goal test defined by constraints on variable values


• Backtracking = depth-first search with one variable assigned per node


• Variable ordering and value selection heuristics help significantly


• Forward checking prevents assignments that guarantee later failure


• Constraint propagation (e.g., arc consistency) does additional work to 
constrain values and detect inconsistencies


• Iterative min-conflicts is usually effective in practice


• Simulated Annealing can help to escape from local optima 


